L'expérience CBM@FAIR : détecteur et potentiel de physique

Fouad Rami IPHC, Strasbourg

Plan de l'exposé :

- Contexte général (FAIR)
- Objectifs scientifiques de CBM
- Système de détection
- > Etudes de faisabilité et de performance
- Conclusions

Rencontres QGP-France 2013, Etretat, 9-12 septembre 2013

FAIR - Facility for Antiproton and Ion Research

GSI - Darmstadt

A large variety of <u>high intensity</u> primary and secondary beams

SIS-100 lons : up to 14 AGeV Protons : up to 29 GeV

SIS-300 lons : up to 45 AGeV Protons : up to 89 GeV

Secondary beams Rare isotopes : up to 2 AGeV Antiprotons : up to 30 GeV

The Facility for Antiproton and Ion Research

The Compressed Baryonic Matter (CBM) experiment

 \rightarrow One of the major experiments at FAIR

Rencontres QGP-France 2013, Etretat, 9-12 septembre 2013

High Energy Heavy-Ion Collisions at FAIR

Specificity of the FAIR energy range (2 to 45 AGeV)

\Rightarrow High net-baryon densities in A-A collisions

Theoretical models

- \rightarrow Net baryon densities up to
 - ~10× ρ_0 can be achieved
- → High density phase lasts for a time span of 3-4 fm/c
- ⇒ A-A collisions in the FAIR energy range will allow exploring a broad region of the QCD phase diagram extending up to very high baryon densities

I.C. Arsene et al., Phys. Rev. C 75 (2007) 034902

Rencontres QGP-France 2013, Etretat, 9-12 septembre 2013

Exploring the QCD phase diagram at high ρ_B

> Deconfinement phase transition $\rightarrow 1^{st}$ order phase transition

- \rightarrow QCD critical endpoint
- In-medium modifications of hadrons (at high baryon densities)
 - \rightarrow chiral symmetry restoration

> Equation of state at high ρ_B

Main topics of the CBM physics program

- \rightarrow Complementarity with RHIC et LHC (high T and low ρ_B)
- \rightarrow Nuclear matter at high ρ_{B} of particular interest in the study of compact astrophysical objects (neutron stars)

The CBM physics program*: Main topics and observables

Deconfinement phase transition at high ρ_{B} & QCD critical point

- \succ excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- > excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- excitation function of dynamical event-by-event fluctuations
- Chiral symmetry restoration at high ρ_{B}
 - in-medium modifications of hadrons
 - \rightarrow dileptons from the decay of light vector mesons, in both e^+e^- and $\mu^+\mu^-$
 - \rightarrow production yield of D-mesons (at threshold)
- The equation-of-state at high ρ_{B}
 - excitation function of the collective flow of hadrons
 - \succ production of multi-strange baryons (Ξ , Ω) at threshold
 - $\text{CBM} \rightarrow \text{detailed}$ measurements with high statistics, including for

charmonium, open charm and lvm (rare probes)

 \rightarrow will be measured for the first time in the FAIR energy range

Thanks to:

- high beam intensities of FAIR (10¹⁰ ions/s for U up to 35 AGeV)
- new generation detector able to operate at extremely high coll rates (up to 10 MHz)

* The CBM Physics Book (2011), Springer Series: Lecture Notes in Physics, Vol. 814

Rencontres QGP-France 2013, Etretat, 9-12 septembre 2013

Experimental challenges

High rate measurements (up to 10 MHz) require:

- \rightarrow fast detectors + radiation tolerant
- \rightarrow fast read-out electronics (free-streaming)
- \rightarrow high speed data acquisition system
- \rightarrow high performance computer farm for online event selection

- → identification of leptons and hadrons
- \rightarrow large acceptance
- → determination of secondary vertices with high precision (σ < 100 μm)

Central Au+Au at 25 A GeV / UrQMD + GEANT 160 p, 400 $\pi^+,~400~\pi^+,~44~K^+,~13~K^-$

The CBM Collaboration: 58 institutions, 500 members

India:

RBI, Zagreb Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei Czech Republic: CAS, Rez Techn. Univ.Prague France: IPHC Strasbourg Hungaria: KFKI Budapest Budapest Univ.

Croatia:

<u>germany</u>

FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS GSI Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf Münster Univ. Tübingen Univ. Wuppertal Univ.

Korea: Korea Univ. Seoul Pusan Nat. Univ. Romania: NIPNE Bucharest Univ. Bucharest

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Rajasthan Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi **VECC Kolkata** SAHA Kolkata **IOP** Bhubaneswar **IIT** Kharagpur Gauhati Univ. Poland: **GH Krakow** lag, Univ, Krakow Silesia Univ. Katowice Warsaw Univ

Russia:

IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP MSU, Moscow St. Petersburg P. Univ. Ukraine: T. Shevchenko Univ. Kiev

Kiev Inst. Nucl. Research

19th CBM Collaboration Meeting, March 26-30, 2012, GSI Darmstadt

The Compressed Baryonic Matter Experiment

Some feasibility studies: Au+Au central collisions at 25 A GeV

CBM: Estimated particle yields for minimum bias Au+Au collisions at 25 AGeV

particle,	N	decay	BR	R/s	Т	3	Y/s	Y/10 w	Yield per
mass (MeV)		mode		(MHz)		(%)			10 weeks
η (547)	6.6	$\mu^+\mu^-$	$5.8 \cdot 10^{-6}$	0.25	у	3	0.28	$1.7 \cdot 10^{6}$	
K ⁺ (494)	8	-	-	0.025	n	20	$4 \cdot 10^4$	$2.4 \cdot 10^{11}$	
K ⁻ (494)	2.6	-	-	0.025	n	20	$1.3 \cdot 10^4$	$7.8 \cdot 10^{10}$	Ī
K_{s}^{0} (497)	5.4	$\pi^+\pi^-$	0.69	0.025	n	10	$9.3 \cdot 10^{3}$	$5.6 \cdot 10^{10}$	Ī
ρ (770)	4.6	e^+e^-	$4.7 \cdot 10^{-5}$	0.025	n	5.4	0.29	$1.8 \cdot 10^{6}$	Ī
ρ (770)	4.6	$\mu^+\mu^-$	$4.6 \cdot 10^{-5}$	0.25	у	2.7	1.4	$8.6 \cdot 10^{6}$	Ī
ω (782)	7.6	e^+e^-	$7.1 \cdot 10^{-5}$	0.025	n	7.2	1	$6 \cdot 10^{6}$	1
ω (782)	7.6	$\mu^+\mu^-$	$9 \cdot 10^{-5}$	0.25	у	3.7	6.3	$38 \cdot 10^{6}$	Huge
\$ (1020)	0.256	e^+e^-	$3 \cdot 10^{-4}$	0.025	n	9.6	0.18	$1 \cdot 10^{6}$	statistics
\$ (1020)	0.256	$\mu^+\mu^-$	$2.9 \cdot 10^{-4}$	0.25	у	6	1.	$6.7 \cdot 10^{6}$	tor bulk
Λ (1115)	6.4	p π ⁻	0.64	0.025	n	10.6	$1.1 \cdot 10^{4}$	$6.5 \cdot 10^{10}$	particles
Ξ- (1321)	0.096	$\Lambda \pi^{-}$	0.999	0.025	n	2.1	50.4	$3 \cdot 10^{8}$	Ţ
$\Omega^{-}(1672)$	0.0044	ΛK^{-}	0.68	0.025	n	1	0.75	$4.5 \cdot 10^{6}$	4.04 4.06
D^0 (1864)	$7.5 \cdot 10^{-6}$	$K^{-}\pi^{+}$	0.038	0.1	у	3.25	$8.5 \cdot 10^{-4}$	$5.1 \cdot 10^{3}$	10 ⁴ - 10 ⁶
$D_{-}^{0}(1864)$	$7.5 \cdot 10^{-6}$	$K^-\pi^+\pi^+\pi^-$	0.075	0.1	у	0.37	$2.1 \cdot 10^{-4}$	$1.3 \cdot 10^{3}$	for rare
D ⁰ (1864)	$2.3 \cdot 10^{-5}$	$K^+\pi^-$	0.038	0.1	у	3.25	$2.6 \cdot 10^{-3}$	$1.6 \cdot 10^4$	particles
D ⁺ (1869)	$8 \cdot 10^{-6}$	$K^-\pi^+\pi^+$	0.092	0.1	у	4.2	$3.1 \cdot 10^{-3}$	$1.9 \cdot 10^{4}$	Ţ
D ⁻ (1869)	$1.8 \cdot 10^{-5}$	$K^+\pi^-\pi^-$	0.092	0.1	у	4.2	$7 \cdot 10^{-3}$	$4.2 \cdot 10^{4}$	Ţ
$\Lambda_c(2285)$	$4.9 \cdot 10^{-4}$	$pK^{-}\pi^{+}$	0.05	0.1	у	0.5	$1.2 \cdot 10^{-2}$	$7.4 \cdot 10^4$	Ī
J/ψ (3097)	$3.8 \cdot 10^{-6}$	e^+e^-	0.06	1-10	у	14	0.032 - 0.32	$1.9 \cdot 10^{5-6}$	Ī
ψ' (3686)	$5.1 \cdot 10^{-8}$	e^+e^-	$7.3 \cdot 10^{-3}$	1-10	у	15	$5.6 \cdot 10^{-(5-4)}$	$3.4 \cdot 10^{2-3}$	
J/ψ (3097)	$3.8 \cdot 10^{-6}$	$\mu^+\mu^-$	0.06	10	у	16	0.36	$2.2 \cdot 10^6$	
ψ' (3686)	$5.1 \cdot 10^{-8}$	$\mu^+\mu^-$	$7.3 \cdot 10^{-3}$	10	у	19	$7.1 \cdot 10^{-4}$	$4.3 \cdot 10^{3}$	

CBM time line

- Present status: beginning of the construction phase
- Installation planned in 2017-2018, followed by commissioning of the detectors
- ➢ First physics data taking in 2019 at SIS100 → low energy part of the physics program (~ 5 years)
- > The physics program will continue later at SIS300 to cover the high energy part

Conclusions

The CBM experiment offers new perspectives for the exploration of the QCD phase diagram in the region of high baryon densities

 \rightarrow large discovery potential: 1st order phase transition, Critical point, Chiral symmetry restoration, EOS

- The detector is designed to operate at very high collision rates (up to 10 MHz)
 - → Measurements for the first time of rare diagnostic probes, highly sensitive to the physics under study
- > The preparation of the experiment is already well advanced
- Currently, all the detectors are in prototyping or construction phase
- Installation planned in 2017-2018, followed by commissioning of the detectors
- ➢ First physics data taking in 2019 at SIS100 → low energy part of the physics program (~ 5 years)
- > The physics program will continue later at SIS300 to cover the high energy part

Backup slides

The CBM physics program*: Main topics and observables

Deconfinement phase transition at high ρ_{B} & QCD critical point (SIS300)

- > excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- > excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- excitation function of dynamical event-by-event fluctuations

Chiral symmetry restoration at high ρ_B (SIS100, SIS300)

- in-medium modifications of hadrons
 - \rightarrow dileptons from the decay of light vector mesons, in both e⁺e⁻ and $\mu^+\mu^-$
 - \rightarrow production yield of D-mesons (at threshold)
- The equation-of-state at high ρ_B (SIS100, SIS300)
 - excitation function of the collective flow of hadrons
 - \succ production of multi-strange baryons (Ξ , Ω) at threshold

 $CBM \rightarrow$ detailed measurements with high statistics, including for

charmonium, open charm and lvm (rare probes)

 \rightarrow will be measured for the first time in the FAIR energy range

Thanks to:

- high beam intensities of FAIR (10¹⁰ ions/s for U up to 35 AGeV)
- new generation detector able to operate at extremely high coll rates (up to 10 MHz)

* The CBM Physics Book (2011), Springer Series: Lecture Notes in Physics, Vol. 814

Rencontres QGP-France 2013, Etretat, 9-12 septembre 2013

Measuring rare probes: Experimental challenges

> CBM must be able to operate at very high collision rates: up to 10⁷ collisions/sec

- → imposes strong constraints on the detector system: must be extremely fast and tolerant to high radiation doses + high precision vertex reconstruction
- \rightarrow strong constraints also on the readout electronics and the DAQ system

Present and future experiments at high ρ_B

Experiment	Timeline	Energy range (Au/Pb beams)	Reaction rates Hz	
STAR/PHENIX RHIC – BNL	BES-I: ongoing BES-II: 2018- 2021	√s _{NN} = 7 – 200 GeV BES-II: < 20 GeV	1 – 800 (*) (limitation by luminosity)	
NA61 SPS – CERN	2009-2015	E_{kin} = 20 – 160 A GeV $\sqrt{s_{NN}}$ = 6.4 – 17.4 GeV	80 (limitation by detector)	
MPD NICA – Dubna	Not yet funded > 2018 ?	√s _{NN} = 4.0 – 11.0 GeV	~1000 (design luminosity of 10 ²⁷ cm ⁻² s ⁻¹ for heavy ions)	
CBM@FAIR Darmstadt	Start: 2018	E_{kin} = 2.0 – 35 A GeV $\sqrt{s_{NN}}$ = 2.7 – 8.3 GeV	up to10 ⁷	ŀ

(*) before luminosity upgrade limitation to 800 due to TPC

Particularly sensitive to phase transitions and high baryon density effects Rare probes (new)

Density and **Temperature at freezeout** for different beam conditions (from hadron gas model)

Maximum net-baryon density reached at ~30 AGeV (√s_{NN} ≈ 8 GeV)
 well within SIS300 range

Onset of Deconfinement Phase Transition

⇒ CBM will scrutinize this energy range with rare diagnostic probes (more sensitive to phase transition effects)

Deconfinement phase transition in CBM

⇒ CBM will measure several observables relevant for the deconfinement phase transition:

- The excitation function of yields, spectra, and collective flow of strange particles, including multi-strange baryons (Ξ, Ω)
- The excitation function of yields, spectra, and collective flow of charmed particles
 - → Open charm particles via their hadronic decay
 - → Charmonium (will be measured in both di-muon and di-electron channels)

Charmonium to open charm ratio sensitive to the nature of the medium in the early stage of the collision → can be used as a signature of the deconfinement phase transition

Results from BES-I at RHIC

- > RHIC performed a scan in energy from $\sqrt{S_{NN}} \sim 200 \text{ GeV}$ (top energy) down to 7.7 GeV
- ightarrow Results \rightarrow QGP signatures seem to disappear below 20 GeV
 - \rightarrow Main observations:
 - High pt suppression not observed below 20 GeV
 - V_2 (particles) \neq V_2 (anti-particles) below 20 GeV \rightarrow deviation w.r.t. the NCQ scaling
 - V₂(Φ) is relatively small at 11.5 GeV (expected if predominant hadronic phase, due to their small hadronic interaction x-section)

 \Rightarrow Needs to be confirmed with higher statistics measurements (BES-2)

 \Rightarrow CBM will extend these studies to multi-strange baryons and charmed particles

QCD critical point

- ➢ Depends on assumptions made
 → Number of quark flavours
 → m_q
- > Localisation of the Critical Point $\rightarrow \mu_B$ from 200 to 1000 MeV!
- > Important to measure over a broad range in energy (\rightarrow broad range in μ_B)

Experimental program	√s _{NN} range (GeV)	μ _в range (MeV)
RHIC (BES)	5 - 30	150 - 580
SPS	4.9 - 17.3	220 – 600
FAIR	2 – 9.3	300 – 800

µ_B coverage → Complementarity between RHIC, SPS and FAIR (+ overlap)

RHIC

SPS

FAIR

Experimental observable: event-by-event fluctuations of conserved quantities like net baryon number, and net-charge → expect anomalies (non-monotonous change) in E-dependence near CP

Dynamical fluctuations in STAR BES

Particule ratio: K/π

Dynamical event-by-event fluctuations γ_{dyn} for the K/ π ratio

→ dynamical := substracted from trivial statistical fluctuations (using mixed event ensembles)

> NA49 data: increase K/pion ... E-dependent acc, in fixed target !!

However: CP effects could be too small:

- correlation length « L » limited by system size & lifetime
- may be washed out by sub-sequent hadronic interactions

```
But: 2<sup>nd</sup> moment ~ L<sup>2</sup> (only)
```

```
Higher moments: 3^{d} (skewness) & 4^{th} (kurtosis) ~ L^{4-5-7}

\rightarrow more sensitive to CP effects
```

Dynamical fluctuations in STAR BES

Fluctuations at higher moments of net-proton number distributions

$$\sigma^{2} = \langle (N - \langle N \rangle)^{2} \rangle$$

$$S = \langle (N - \langle N \rangle)^{3} \rangle / \sigma^{3} \qquad \text{Skewness}$$

$$\kappa = \langle (N - \langle N \rangle)^{4} \rangle / \sigma^{4} - 3 \quad \text{Kurtosis}$$

Present results \rightarrow CP (if it exists) should be below $\sqrt{s} = 39$ GeV

- → At lower energies -> difficult to draw clear conclusions due to large statistical and systematic uncertainties
- → BES II will provide more accurate data
- → CBM will provide high statistics data in the region below $\sqrt{s} = 10$ GeV

In-medium modification of hadron properties

- ➤ Indications on the chiral symmetry restoration ↔ origin of hadron mass
- > A sensitive observable: light vector mesons (ρ , ω , Φ) in their leptonic decay channel
 - formed and decay inside the fireball (e.g. lifetime of ρ in vacuum = 1.3 fm/c)
 - leptons not affected by final state interactions \rightarrow probe to study the properties of these mesons in a dense and hot medium

CERES, Eur.Phys.J. C 41, 475 (2005)] HADES, Phys. Rev. C 84 (2011) 014902 $1/N_{\pi^0} dN/dM_{ee} [(GeV/c^2)^{-1}$ Pb-Au 158 AGeV Ar+KCI 1.76 AGeV σ/σ_{deo}≈ 28 % $<dN_{ee}/dm_{ee}>/<N_{ch}>$ (100 MeV/c²⁾⁻¹ $<dN_{ch}/d\eta>=245$ p+np) 1.25 AGeV 10⁻⁵ 2.1<n<2.65 combined 95/96 data p,>0.2 GeV/c $\Theta_{a}>35 \text{ mrad}$ 10-7 > 9° Excess of ~2.3 0.1 < p < 1.1 GeV/c 10-8 n comp. subtracted 10^{-6} ō 0.2 0.4 0.6 0.8 1.2 1.4 1.6 0.2 0.4 n m_{ee} (GeV/c²) M_{ee} [GeV/c²]

Measured at SPS (CERES, NA60) and at SIS18 (HADES)

Recent theoretical studies indicate that these effects are more driven by baryon density than by temperature \Rightarrow Importance of high ρ_B measurements \rightarrow FAIR energy range (CBM)

CERES data \rightarrow excess factor higher at lower energy

In-Medium Modifications of Hadron Properties Open Charm

CBM will contribute to the determination of the EOS in the region of high baryon densities

To constrain the theory, CBM will measure two sensitive observables:

- > Collective flow of hadrons (driven by the pressure created in the early fireball)
- Production yield of multi-strange baryons at incident energies close to their kinematical threshold (2 to 10 A GeV)

Messengers from the dense fireball

Particles produced early in the collision are much more sensitive to the high density phase (fireball)

- \rightarrow Charmed particles formed very early (hard processes)
- → Lepton pairs from the decay of light vector mesons are unperturbed by the effect of final state interactions (messengers from the fireball)

> These particles are produced with very low production yields \rightarrow rare probes

 \Rightarrow CBM will measure them for the first time in the FAIR energy range ($\sqrt{S_{NN}}$ < 10 GeV)

Electron pairs

> Electron id: TRD, RICH (combination $\rightarrow \pi$ suppression factor of 10⁴)

- Background dominated (75%) by physical sources (mainly from π⁰ Dalitz decays)
- > Expected statistics per 10 weeks (Min bias) \rightarrow Light vector mesons ~ few 10⁶ each \rightarrow J/ ψ ~ 2 x 10⁶, ψ ' ~ 3 x 10³

particle	S/B	ε (%)	
ω	0.4	6.6	
φ	0.32	9.4	
ρ	0.008	4.7	
J/ψ	13	14	
Ψ	0.3	19	

Muon pairs

- Muon id: segmented hadron absorber + tracking stations
 - Iron absorber: 3x20 + 30 + 35 + 100 cm
 - 6 detector triplets: 3 GEM + 3 straw tubes

(intrinsic p>1.5 GeV cut)

Expected statistics per 10 weeks (Min bias)

- \rightarrow Light vector mesons ~ few 10⁷ each
 - 10 x higher than with dielectrons
 - but exclude the mass range below $2m_{\mu} \sim 200 \text{ MeV/c}^2$ (close to the edge of ρ)

$$\rightarrow J/\dot{\Psi} \sim 2 \times 10^6, \quad \Psi' \sim 4 \times 10^3$$

particle	S/B	ε (%)	
З	0.11	4	
φ	0.06	7	
ρ	0.002	3	
J/ψ	18	13	
Ψ	1	16	