

Matt Nguyen Rencontres QGP-France September 13th, 2013

The Usual Disclaimers

- Not a comprehensive review, rather mostly a summary of experimental talks at July Jussieu workshop*
- Will only discuss LHC results, no RHIC
- Results are biased towards CMS
- I will focus strictly on jets, no mention of, high p_T spectra, correlations, etc.
- No pPb in this talk

* https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=242816

Outline

- Detector capabilities
- Jet reconstruction / Underlying event subtraction methodologies
- Results!

ALICE

Relevant Detectors

- Tracking: ITS + TPC
- Calorimeters:
 EMcal
 - + Dcal (future)
- Also excellent PID

Pros:

- Excellent tracking efficiency down to 150 MeV/c
- Reasonable p_T (E) resolution tracker (EMCal)
- Good shower separation in EMCal

Cons:

- No hadronic calorimetry yet
- Relatively small acceptance, low trigger rate

Photon-Track Matching in ALICE

- Including EMcal, ~90% of particles are measured
- However, charged hadron deposits in EMcal must be taking into account
- Tracks are matched to EMcal clusters and entire momentum is subtracted

- Presumably, photons collinear with charged hadrons can be oversubtracted
- This is taken care of at the unfolding stage
- The fraction of the track momenta subtracted from the clusters is varied to assign a systematic uncertainty

ATLAS

Relevant Detectors

- Calorimeters:
- Liquid Argon (EM)
- Tile (Hadronic)

Pros:

- Good EM energy resolution
- Excellent hadronic energy resolution
- Longitudinal segmentation

Cons:

- Relatively low/non-linear response to low p_T constituents
- Large material budget

Review of jets in heavy ions

CMS

Relevant Detectors

- Silicon Tracker
- PbWO₄ ECAL
- Brass-scintillator HCAL

Pros:

- Excellent p_T (E) resolution in tracker (ECAL)
- Large B field + granular ECAL suitable for particle flow Cons:
- Modest E resolution and granularity for HCAL
- Limited tracking efficiency and low p_T reach in HI mode
- Large material budget

Particle Flow in CMS

- PF combines detector elements to move closer to particle level
- Minimizes jet energy corrections and reduces dependence on jet fragmentation pattern
- Uses redundancy of tracker and HCAL to linearize response to charged hadrons and reject fake tracks

Jet Response Calibration

Relative response via dijet balancing

Absolute JES via $\gamma(Z)$ +jet balancing

- Data-driven techniques correct for generator and simulation mismodeling
- Residual corrections on the order of 1.5% in CMS

Jets in Heavy lons

- Q: How much energy do partons lose?
- Corollary: How does the medium respond?
- Partons not observable, but correspondence to particlelevel jets well-understood in pp
- Parton-medium interaction breaks this correspondence
 → need model comparisons

 A good UE subtraction scheme allows to isolate the interesting physics (energy loss + medium interaction)

UE subtraction methods

G. Salam, et. al.

	ALICE [FastJet area/median method]	ATLAS	CMS [Iterative Cone Subtraction]
Background estimated in	whole detector [optionally: jet neighbourghood]	η strips	η strips
Hard jets excluded from bkgd estimate	by median	by p _t cut	by p _t cut
Flow corrections	NO [unless use jet neighbourhood]	yes	no
Subtract bkgd from	jets [after jet clustering]	towers [after jet clustering]	towers [before jet clustering]
Noise suppression	no	no	Yes [subtract ρ+σ from each tower, suppress -ve towers]

Very different strategies employed by different experiments

Influence of Flow on the UE

- Azimuthal anisotropy of UE already visible event-by-event
- Correlated across pseudorapidity
- Should be properly taken into account in UE subtraction

Modeling the UE in CMS

- Detector split into barrel, endcap and forward
- Barrel and endcap UE activity (including azimuthal dependence) is predicted based on forward calo. activity
- Prediction is based on fits to MinBias data

Particle-based Subtraction

CMS-DP-2013-018

- Voronoi diagrams are used to assign an area to each particle
- Background is estimated independently for each particle type
- Any oversubtraction is removed by an equalization procedure

Performance vs Angle wrt Rxn Plane

CMS-DP-2013-018

New UE subtraction removes dependence on flow orientation

Underlying Event in ALICE

- Fluctuations evaluated by random cones, x-checked by embedding (vice-versa for CMS)
- UE density p depends only on centrality (i.e., global rescaling)
 Detailed discussion of ALICE UE subtraction in JHEP 1203 (2012) 053

- Same centrality selection
- Different R values

Jet x-section, R_{AA}

 R_{AA} of jets down to low p_T !

Inter-experiment Comparisons

Dijet p_T Ratio (p_{T2}/p_{T1})

- Energy imbalance increases with centrality
- Jet quenching persists to very high p_T

PRC84 (2011) 024906

0-30% Central PbPb

The momentum difference in the dijet is balanced by low p_T particles outside the jet cone

Recoil Jets in ALICE

- Studying jets recoiling from a high p_T charged hadron
- Large UE event background for low p_T recoil jets

- UE event appears to be independent of hadron p_T
- Use low p_T trigger associated yield to subtract UE
- Able to observe suppression of recoil jet in I_{AA}

"Fragmentation Functions"

CMS-PAS-HIN-12-013

Defined w.r.t. reconstructed jet

- Deficit at intermediate z compensated at low z
- Consistent results from ATLAS

 n^{track}

 n^{jet}

Photon+Jet

- $\circ \gamma p_T > 60 \text{ GeV/c}$
- \circ Jet p_T > 30 GeV/c

- Photon ID based on isolation and shower shape
- CMS and ATLAS consistent within errors / experimental effects
- Also Z+jet from ATLAS

CMS: <u>PLB 718 (2013) 773</u> ATLAS-CONF-2012-121

Impact Parameter Resolution

ALI-PERF-31

- Good IP resolution is the key to b-tagging
- Similar b-tagging performance from ATLAS and CMS
- ALICE offers best IP resolution at the LHC

b-Tagging in CMS

<u>CMS-PAS-HIN-12-003</u>

- Jets are tagged by direct reconstruction of secondary vertices
- A selection is made on the flight distance significance
- The b-jet purity is extracted via a template fit

b-Jet Fraction

CMS-PAS-HIN-12-003

- Ratio of b-jets to inclusive jets
- pp data consistent with PYTHIA
- PbPb b-jet fraction unmodified \rightarrow b-jets suppressed like light jets

Outlook

- LHC Run 1 provided a number of firsts for HI
 - Clean jet measurements
 - Photon-jet and Z-jet
 - b-Tagging
- Now that the landscape has been mapped out careful studies are in order
 - Coordination of methodologies amongst experiments and with theory
 - Beating down systematics
- The luminosity will continue to increase, it's up to us to take advantage of it