

Y measurement with ALICE

Motivations > ALICE muon spectrometer Nuclear modification factor \blacktriangleright pp collisions at $\sqrt{s} = 7$ TeV (2011) • $\Upsilon(1S)$ and $\Upsilon(2S)$ differential cross section > Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (2011) • Υ(1S) nuclear modification factor \blacktriangleright p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV (2013) • Υ(1S) nuclear modification factor • Y(1S) forward-backward ratio

Loïc Manceau for the ALICE Collaboration INFN Torino Imanceau@to.infn.it

Rencontres QGP-France-13 Etretat, 9-12 septembre 2013

Motivations: pp and pA

- Proton-proton collisions
 - Testing the hadroproduction models (CEM, NRQCD: CSM, COM)

- Baseline for pA and AA collisions measurements
- Proton-Nucleus collisions
 - Studying shadowing, saturation and energy loss at $x_{bjorken}$ and transfer momentum different than for J/ ψ
 - Break-up should be small for the Υ
 (long formation time, strong binding of beauty quark pairs)
 - Cold Nuclear Matter effects measurements are necessary for the study of hot nuclear matter effects in AA collisions

Motivations AA

Signature of the deconfinement

• Quarkonium suppression by color screening (Matsui and Satz, PLB 178 (1986) 416)

Temperature probe

 Sequential suppression of quarkonia (*Digal et al. PRD 64 (2001) 0940150*) The Y(1S) should be suppressed at temperature much more important than other bottomonia (or charmonia). The Y family could serve as a very efficient thermometer

> Possible (re-)generation if beauty quark multiplicity is important

> Upsilon measurement:

- $\textcircled{\odot}$ Open heavy flavors doesn't decay into Υ
- $\ensuremath{\textcircled{\circ}}$ Υ (re-)generation shouldn't be very important
- ☺ Important contribution from feed-down by higher mass bottomonia

The ALICE muon spectrometer

Invariant mass distributions

- The signal is extracted with a fit
- Low statistics:
- Measurement of $\Upsilon(1S)$ and
- $\Upsilon(2S)$ in pp collisions
- Measurement of Υ(1S) in Pb-Pb, p-Pb and Pb-p

p-Pb and Pb-Pb collisions: R_{AA}

> Nuclear modification factor (R_{AA}):

- Relative production of Υ in Pb-Pb collisions with respect to pp collisions production at the same energy and scaled to the number of binary nucleon-nucleon collisions
- $R_{AA} \neq 1 \rightarrow Nuclear$ effects

pp reference cross section for R_{AA}

 \succ Y was not measured in pp collisions at $\sqrt{s} = 5.02$ TeV or $\sqrt{s} = 2.76$ TeV in ALICE

Estimate of $d\sigma_{pp}/dy$ at forward rapidity and $\sqrt{s} = 5.02$ TeV or $\sqrt{s} = 2.76$ TeV :

- **1.** Interpolation of $d\sigma/dy$ at y=0 from available mid-rapidity data (Tevatron+LHC)
- **2.** Extrapolation of $d\sigma/dy|_{y=0}$ at forward rapidity (2.5<y<4)

 $\begin{array}{l} \mathsf{CDF}(1.8 \ \mathsf{TeV}) \rightarrow \mathsf{D}. \ \mathsf{Acosta} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CDF} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{Lett.} \ 88 \ (2002) \ 161802. \\ \mathsf{D0} \ (\ 1.96 \ \mathsf{TeV}) \rightarrow \mathsf{V}. \ \mathsf{M}. \ \mathsf{Abazov} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{D0} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{Lett.} \ 94 \ (2005) \ 232001 \ [\mathsf{Erratum-ibid.} \ 100 \ (2008) \ 049902] \ [\mathsf{hep-ex}/0502030]. \\ \mathsf{CMS}(\ 2.76 \ \mathsf{TeV}) \rightarrow \mathsf{S}. \ \mathsf{Chatrchyan} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CMS} \ \mathsf{Collaboration}], \ \mathsf{JHEP} \ 1205, \ 063 \ (2012) \ [\mathsf{arXiv}: 1201.5069 \ [\mathsf{nucl-ex}]]. \\ \mathsf{CMS}(\ 7 \ \mathsf{TeV}) \rightarrow \mathsf{V}. \ \mathsf{Khachatryan} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CMS} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{D} \ 83, \ 112004 \ (2011) \ [\mathsf{arXiv}: 1012.5545 \ [\mathsf{hep-ex}]]. \\ \mathsf{THCb}(\ 7 \ \mathsf{TeV}) \rightarrow \mathsf{R}. \ \mathsf{Aaij} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{LHCb} \ \mathsf{Collaboration}], \ \mathsf{Eur.} \ \mathsf{Phys.} \ \mathsf{J.} \ \mathsf{C} \ 72, \ 2025 \ (2012) \ [\mathsf{arXiv}: 1202.6579 \ [\mathsf{hep-ex}]]. \end{array}$

pp reference cross section for R_{AA}

> Interpolation of d σ /dy at y=0:

- 1. Phenomenological approach
- 2. Approach relying on pQCD and based on a CEM-like hypothesis

$$\frac{d\sigma^{\mathrm{Y}}}{dy}\bigg|_{y=0}\left(\sqrt{s}\right) = \alpha \cdot \frac{d\sigma^{b\bar{b}}}{dy}\bigg|_{y=0}\left(\sqrt{s}\right)$$

Production of beauty quark at various Vs: pQCD FONLL
α obtained by a fit of the ratio Data/pQCD FONLL

 $\begin{array}{l} \mathsf{CDF}(1.8 \ \mathsf{TeV}) \rightarrow \mathsf{D}. \ \mathsf{Acosta} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CDF} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{Lett.} \ 88 \ (2002) \ 161802. \\ \mathsf{D0} \ (1.96 \ \mathsf{TeV}) \rightarrow \mathsf{V}. \ \mathsf{M}. \ \mathsf{Abazov} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{D0} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{Lett.} \ 94 \ (2005) \ 232001 \ [\mathsf{Erratum-ibid.} \ 100 \ (2008) \ 049902] \ [\mathsf{hep-ex}/0502030]. \\ \mathsf{CMS}(\ 2.76 \ \mathsf{TeV}) \rightarrow \mathsf{S}. \ \mathsf{Chatrchyan} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CMS} \ \mathsf{Collaboration}], \ \mathsf{JHEP} \ 1205, \ 063 \ (2012) \ [\mathsf{arXiv}: 1201.5069 \ [\mathsf{nucl-ex}]]. \\ \mathsf{CMS}(\ 7 \ \mathsf{TeV}) \rightarrow \mathsf{V}. \ \mathsf{Khachatryan} \ \mathsf{et} \ \mathsf{al.} \ [\mathsf{CMS} \ \mathsf{Collaboration}], \ \mathsf{Phys.} \ \mathsf{Rev.} \ \mathsf{D} \ 83, \ 112004 \ (2011) \ [\mathsf{arXiv}: 1012.5545 \ [\mathsf{hep-ex}]]. \\ \end{array}$

pp reference cross section for R_{AA}

- > Extrapolation of $d\sigma/dy|_{y=0}$ at forward rapidity:
 - 1. Simulation of rapidity shapes on a large range with different tunings of Pythia 6.4 and shape selection according to their ability in reproducing pp at Vs = 7 TeV data from LHCb (forward rapidity) and CMS (mid-rapidity)
 - 2. The shapes simulated at $\sqrt{s} = 5.02$ TeV or $\sqrt{s} = 2.76$ TeV with tunings which successfully passed the test are normalized to the interpolated $d\sigma/dy|_{y=0}$

CMS(7 TeV) → V. Khachatryan et al. [CMS Collaboration], Phys. Rev. D 83, 112004 (2011) [arXiv:1012.5545 [hep-ex]]. LHCb(7 TeV) → R. Aaij et al. [LHCb Collaboration], Eur. Phys. J. C 72, 2025 (2012) [arXiv:1202.6579 [hep-ex]].

Cross section in pp collisions at $\sqrt{s} = 7$ TeV

ALICE and LHCb results are compatible (EPJC 72 (2012) 2025)
 Ability of ALICE in measuring Υ

Inclusive $\Upsilon(1S) R_{AA}$ in Pb-Pb collisions at $Vs_{NN}=2.76$ TeV

- \succ Inclusive $\Upsilon(1S)$ is suppressed at forward rapidity
- > The suppression is more important in central collisions
- The suppression is rather rapidity independent

Inclusive $\Upsilon(1S) R_{AA}$ in Pb-Pb collisions at $Vs_{NN}=2.76$ TeV Comparison with J/ ψ data at forward rapidity

 \succ The suppression of $\Upsilon(1S)$ and J/ ψ is compatible at forward rapidity

> No straightforward interpretation can be given due to the unknown contributions of the suppression, the (re-)generation and the feed-down for J/ ψ and Υ (Υ (1S) ~50% feed-down (*CDF: PRL 84, 2094 (2000)*))

Inclusive $\Upsilon(1S) R_{AA}$ in Pb-Pb collisions at $Vs_{NN}=2.76$ TeV ALICE (2.5<y<4) and CMS (|y|<2.4) data

CMS data: PRL 109, 222301 (2012)

- The suppressions observed by ALICE and CMS are compatible
- The Y(1S) suppression is rather weakly dependent on rapidity on the large interval covered by ALICE and CMS

Inclusive $\Upsilon(1S) R_{AA}$ in Pb-Pb collisions at $Vs_{NN}=2.76$ TeV Comparison with models

- Transport model with direct suppression
- Hypothesis: « strong binding scenario »
 - \rightarrow very small suppression of direct $\Upsilon(1S)$ (due almost exclusively to CNM effects) \rightarrow small regeneration component
- Isentropically expanding isotropic fire cylinder
- Feed-down taken into account
- CNM effects implemented with a phenomenological absorption cross section

Data are reasonably described by the transport model

- Screened potential model
 - \rightarrow small suppression of direct $\Upsilon(1S)$
 - \rightarrow No regeneration
- Anisotropic hydrodynamic formalism (HYDRO)
 - \rightarrow connection of the early stage of the QGP evolution with final stage (shear viscosity)
- Feed-down taken into account
- CNM effects not implemented
- 14

Inclusive $\Upsilon(1S) R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV Comparison with models

The hydrodynamic model describes reasonably well the data with a boost invariant initial temperature profile and a minimal shear viscosity for the QGP

Inclusive $\Upsilon(1S) R_{pA}$ in p-Pb and Pb-p collisions at $Vs_{NN} = 5.02$ TeV

The two LHC beam configurations allow to measure the Υ(1S) production at forward and backward rapidity

 Backward: data compatible with almost no suppression
 Forward: more suppression

Υ (1S) R_{pA} in p-Pb and Pb-p collisions at Vs_{NN} =5.02 TeV EPS09 LO and EPS09 NLO

- $\succ \Upsilon(1S)$ and J/ ψ suppressions are compatible
- EPS09 NLO and LO predictions reproduce the data
- \geq EPS09 NLO tends to underestimate the $\Upsilon(1S)$ suppression at forward rapidity
- \succ Better agreement with J/ ψ data

$\Upsilon(1S) R_{pA}$ in p-Pb and Pb-p collisions at $Vs_{NN} = 5.02$ TeV Energy Loss and CGC models

Coherent parton energy loss:

- Medium induced energy loss
- Longed-lived, color octet heavy quark pairs
- Single free parameter q₀
- See next talk by François Arleo

- Heavy quark pairs produced by a dense medium made of gluons of small x_{bjorken} (saturation)
- ➢ Quarkonia production: CEM
- The energy loss model reproduces the data but tends to underestimate the Y(1S) suppression at forward rapidity
- \succ The CGC model is disfavored by J/ ψ data, results are better with $\Upsilon(1S)$ data

Forward-Backward ratio of inclusive Y(1S): R_{FB}

- In the R_{pPb}/R_{Pbp} ratio the reference pp cross section and associated uncertainties are washed out but less statistics is available in the common y_{cms} range
- > The Υ (1S) R_{FB} is compatible with the unity
- > The J/ ψ R_{FB} is significantly smaller than for Y(1S)
- \succ On the contrary to J/ ψ , Υ data tends to favor a small shadowing effect
- Models describe Υ(1S) R_{FB}

Conclusion

\succ pp collisions at $\sqrt{s} = 7$ TeV

• The inclusive $\Upsilon(1S)$ differential cross section has been measured as a function of y and p_T

> PbPb collisions at $Vs_{NN} = 2.76 \text{ TeV}$

- The nuclear modification factor of inclusive Υ(1S) has been measured as a function of the centrality and of the rapidity
- A suppression is observed and is more important in central collisions
- The suppression is rather weakly dependent on rapidity in the large range covered by ALICE (2.5<y<4) and CMS (|y|<2.4)
- Two models with different ingredients for the quarkonia/QGP interactions and the spacetime evolution of the QGP describe reasonably well the data

ightarrow p-Pb and Pb-p collsions at $\sqrt{s_{NN}} = 5.02$ TeV

- R_{pPb} , R_{Pbp} and their ratio has been measured for the inclusive $\Upsilon(1S)$ as a function of y_{cms}
- At backward rapidity data are compatible with an almost inexistent suppression
- At forward rapidity data are more suppressed
- Data are reasonably well reproduced by EPS09 NLO, LO, Coherent parton energy loss and a CGC model predictions within large experimental uncertainties

Back up

Υ(1S) dans les collisions p-Pb Pb-p

J/ψ dans les collisions p-Pb et Pb-p

CMS

The muon spectrometer

MUON FILTER