Muons from Open Heavy-flavour Decays in pp, **Pb-Pb and p-Pb Collisions with ALICE**

<u>Shuang Li</u> for the ALICE Collaboration

Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand, France Institute of Particle Physics, CCNU, Wuhan, China Key Laboratory of Quark & Lepton Physics, MoE, China

Rencontres, QGP-France-13, Etretat, 9-12 Septembre 2013

Outline

- Heavy-Flavour Physics at the LHC
- Heavy-Flavour Measurements with ALICE
- Muon analysis results in p-p, Pb-Pb and p-Pb collisions
- Conclusions and Outlooks

Part 1: Introduction

Heavy-Flavour Physics at the LHC

- Heavy flavours in **pp collisions**
 - ✓ baseline for pA and AA collisions
 - ✓ test NLO pQCD in a new energy domain

Heavy flavours in AA collisions: tomography of QCD medium

✓ Nuclear modification factor

mass and color charge dependence of parton energy loss;

- azimuthal anisotropic flow \checkmark
 - low p_{T} region: initial conditions of QCD medium, degree of thermalization of heavy quarks in QGP,
 - high p_{τ} region: path length dependence of heavy flavour energy loss;
- Heavy flavours in **pA collisions**
 - \checkmark "correct" R_{AA} for shadowing effects: deviation of R_{pA} from unity reveals the presence of cold nuclear matter (CNM) effect

 $R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_T}{d\sigma_{nn}/dp_T}$

 $\Delta E_g > \Delta E_{q \approx c} > \Delta E_b$ $R^h < R^D < R^B_{AA}$

Heavy-flavour Measurements with ALICE

ITS, TPC, TRD, ToF, EMCal (|η|<0.9) (di-)electrons: J/ψ , ψ ', Υ , Υ ', Υ '', open charm, open bottom, W[±], Z⁰

muon spectrometer (-4<η<-2.5) (di-)muons: J/ψ , ψ ', Υ , Υ ', Υ ", open charm, open bottom, W[±], Z⁰

ITS, TPC, ToF (|η|<0.9) hadrons: D^0 , D^{\pm} , D^{*} ...

electron-muon coincidences: open charm & bottom

The heavy-flavour physics is investigated in several decay channels and large rapidity coverage with ALICE.

Data samples

• pp collisions @ $\sqrt{S_{NN}}$ = 7 TeV: data collected in 2010, muon trigger events;

- Pb-Pb collisions @ $\sqrt{s_{NN}}$ = 2.76 TeV
 - ✓ $R_{\Delta\Delta}$: data collected in 2010, min.bias events;
 - \checkmark v_2 : data collected in 2011, central and semi-central events;
- p-Pb/Pb-p collisions @ $\sqrt{s_{NN}}$ = 5.02 TeV: data collected in 2013, muon trigger events.

Muon selection

- muon trigger matching: reject hadrons that cross the absorber;
- pxDCA: remove beam-gas and particles produced in the absorber.

Punch through hadrons

Decay Muon Subtraction in p-p Collisons

Strategy:

- ✓ extract dN/dp_T of K/π decay muons from simulation (PYTHIA or Phojet);
- \checkmark normalize it to measured muon yield at low p_{τ} ;
- \checkmark subtract from inclusive dN/dp_T to obtain heavy flavour decay muon spectrum;

Systematic uncertainty:

- \checkmark models: estimated by using different inputs;
- ✓ transport codes, estimated by varying yield of muons from secondary K/π between 0 and 200%.

Decay Muon Subtraction in Pb-Pb Collisons

Strategy:

- \checkmark input: K/π spectra in pp collisions and R_{AA} in Pb–Pb collisions at central rapidity measured with ALICE; [J. Phy. G, G38 (2011) 124014 & 124080]
- \checkmark extrapolate K/ π spectra in pp collisions to forward rapidity by means of Monte-Carlo simulations according to

$$d^2 N_{pp}^{\pi^{\pm},K^{\pm}} / dp_t dy = [d^2 N_{pp}^{\pi^{\pm},K^{\pm}} / dp_t dy]_{y=0} \exp\left(\frac{d^2 N_{pp}^{\pi^{\pm},K^{\pm}}}{dp_t dy}\right)_{y=0} \exp\left(\frac{d^2 N_{pp}^{\pi^{\pm},K^{\pm}}}{dp_t dy}\right)_{y$$

✓ get K/π spectra in Pb–Pb collisions at forward rapidity by scaling the extrapolated charged K/π spectra with their R_{AA} at central rapidity

$$dN_{\rm PbPb}^{\pi^{\pm},K^{\pm}}/dp_{t} = \langle T_{AA} \rangle (d\sigma_{pp}^{\pi^{\pm},K^{\pm}}/dp_{t}) [R_{AA}^{\pi^{\pm},K^{\pm}}/dp_{t}] [R_{AA}^{\pi^{\pm},K^$$

vary $K/\pi R_{AA}$ between 0 and 200% to estimate the systematic uncertainty on unknown quenching effect at forward rapidity;

produce the K/π decay muon background by means of fast simulation. \checkmark

 $(p_t)]_{v=0}$

Decay Muon Subtraction in p-Pb Collisons

• Strategy:

- ✓ input: K/π spectra in p-Pb collisions at central rapidity measured with ALICE;
- ✓ extrapolate K/π spectra in p-Pb collisions to forward rapidity by means of Monte-Carlo simulations according to

$$\frac{1}{N_{AA}^{ev}} \frac{dN_{pA}^{k/\pi}}{dp_t} \bigg|_{FW} = \frac{1}{N_{AA}^{ev}} \frac{dN_{pA}^{k/\pi}}{dp_t} \bigg|_{CB} \times F_{extra.}$$

$$F_{extra.} = \frac{1}{N_{AA}^{ev}} \frac{dN_{AA}^{k/\pi}}{dp_t} \bigg|_{a}^{b} / \frac{1}{N_{AA}^{ev}} \frac{dN_{AA}^{k/\pi}}{dp_t} \bigg|_{0}^{0.5}$$

by using the *non-parameterized* rapidity extrapolation factor;

✓ produce the K/π decay muon background by means of fast simulation.

$$\frac{1}{N_{AA}^{ev}} \frac{dN_{pA}^{\mu \leftarrow k/\pi}}{dp_t} \bigg|_{FW(\Delta p_t)} = \{ \frac{\frac{1}{N_{AA}^{ev}} \frac{dN_{pA}^{k/\pi}}{dp_t} \bigg|_{FW}}{\frac{dN_{pA}^{flat k/\pi}}{dp_t}} \times \frac{dN_{pA}^{\mu \leftarrow flat k}}{dp_t} \bigg|_{FW}$$

measured with ALICE; pidity by means of

 $/\pi$ - $|_{FW}(\Delta p_t)$

Normalization to Min. Bias events

Strategy: two methods are used to obtain the number of equivalent Min. Bias events from the MSL/MSH triggers: about 1% difference

Offline method from AOD ullet

$$F_{norm}(MSL) = \frac{N_{MB} \times F_{pile-up}}{N_{(MB \&\& 0MSL)}}$$
$$F_{norm}(MSH) = \frac{N_{MB} \times F_{pile-up}}{N_{(MB \&\& 0MSL)}} \times \frac{N_{MSL}}{N_{(MSL \&\& 0MSL)}}$$

Scaler method from OCDB: used in the following lacksquare

$$F_{norm} = \frac{L0b_{MB} \times purity_{MB} \times F_{pile-up}}{L0b_{MSL(MSH)} \times PS_{MSL(MSH)}}$$

N.B. *L*0*b* is the value of *L*0*b* counter for selected trigger;

PS is the fraction of physics selection accepted triggers;

purity is the fraction of events which satisfy V0 timing cut (that is better than 99% for most of the runs)

F _{norm} (0-100%)	p-Pb		Pb-p	
	Offline	Scaler	Offline	Scaler
MSL	28.1	28.5	20.4	20.4
MSH	1024.3	1040.8	795.2	794.2

$$F_{pile-up} = \mu/e^{-\mu}, \ \mu = -\ln(1 - purity_{MB} * \frac{L0bRate_{MB}}{N_{colliding}*f_{LHC}})$$

MSH)

Acceptance x Efficiency Correction

Reminder for Pb-Pb collisions

- the centrality dependence of tracking efficiency is estimated via embedding procedure
- efficiency drops by $4 \pm 1\%$ in the 10% most central collisions w.r.t. peripheral collisions

Follow same strategy as in pp collisions

- no dependence on centrality expected (Javier, Jpsi2mumu PAG meeting, 31/05/2013)
- simulations using beauty signals with realistic detector condition as inputs
- systematic uncertainty on misalignment: $1\% x p_T (p_T \text{ in GeV}/c)$

Part 2: Results & Discussions

p-p collisions

- p_{T} -differential cross sections of muon from heavy-flavour decays measured at 2.76 and 7 TeV;
- The FONLL pQCD calculations are in good agreement with data within experimental and theoretical uncertainties;
- baseline for the study of heavy quark in-medium effects in Pb-Pb and p-Pb collisions.

cross section

Pb-Pb collisions

- suppression is observed and is independent of p_{T} within uncertainties (in the measured p_{T} interval);
- stronger suppression in central than peripheral collisions, reaching a factor of about 3–4 in the 10% most central collisions;
- in the p_{T} region (p_{T} >6 GeV/c), beauty contribution is dominant in pp collisions, according to FONLL calculations.

----- nuclear modification factor R_{AA}

Pb-Pb collisions

- Left: differential v_2 vs p_T
- \checkmark v_2 of muons from heavy-flavour decays in semi-central collisions (20-40%) is systematically larger than that in central collisions (0-10%);
- non-zero v_2 (3 σ effect) in 3< p_T <5 GeV/*c* and 20-40% centrality class;
- Right: integrated v_2 (in $3 < p_T < 10 \text{ GeV}/c$) vs centrality
 - v_2 of muons from heavy-flavour decays increases from central to peripheral collisions;
 - non-zero v_2 (3 σ effect) in semi-central collisions (20-40%).

azimuthal anisotropic flow

p-Pb collisions

----- nuclear modification factor R_{pA}

Conclusion

cross section of muons from heavy-flavour decays measured in pp collisions:

- ✓ FONLL predictions in good agreement with data within uncertainties;
- ✓ baseline for the study of AA and pA collisions
- $R_{\Delta\Delta}$ of muons from heavy flavour decays measured as a function of p_{τ} and centrality:
 - \checkmark a strong suppression of high p_{τ} muons from heavy-flavour decays is observed in central collisions;
 - ✓ no significant dependence on p_{τ} in 4< p_{τ} <10 GeV/*c*;
 - v_2 of muons from heavy-flavour decays:
 - \checkmark v₂ in 20-40% centrality class is larger than that in the most central collisions ✓ non-zero v_2 (3 σ effect) in 3< p_T <5 GeV/*c* and 20-40% centrality class;
- R_{pA} of muons from heavy-flavour decays in 0-100%:

Ongoing work

- implement the similar strategy of the background estimation in Pb-p collisions;
- measure the R_{Ap} ;
- get the forward to backward ratio R_{FR} .

backup

Convert the spectra to muon level

same method as using in R_{AA} and flow analysis

- ✓ weighting procedure: $p_t^{flat k/\pi} \leftrightarrow p_t^{\mu \leftarrow flat k/\pi}$;
 - $f \square$ for each muon we get the transverse momentum of its mother K/pi ($p_t^{flat\;k/\pi}$)
 - weight the above muon spectra according to the bin content at $p_t = p_t^{flat k/\pi}$ in the given K/pi distribution, and then re-fill it;
 - systematics uncertainties on the given K/pi spectrm and rapidity extrapolation factor are taken into account, and also the absorber effect;
 - □ finally, we normalize the weighted muon distribution with the total number of generated mother K/pi . charged hadron in

$$\frac{1}{N_{AA}^{ev}} \frac{dN_{pA}^{\mu \leftarrow k/\pi}}{dp_t} \bigg|_{FW(\Delta p_t)} = \begin{cases} \frac{1}{N_{AA}^{ev}} \frac{dN_{pA}^{\kappa/\pi}}{dp_t} \bigg|_{FW}}{\frac{dN_{pA}^{flat k/\pi}}{dp_t}} \times \frac{dN_{pA}^{\mu \leftarrow p}}{dp_t} \end{cases}$$

- charged hadron in forward rapidities
- $\left. \frac{f \ln t k}{\pi} \right|_{FW(\Delta p_t)}$

Similar HF decay e (|y| < 0.6) and μ (2.5<y<4.0) R_{AA} in 0-10%;

difficulty: comparison of R_{AA} of D mesons and that of HF decay electrons must consider semi-leptonic decay kinematics $(p_{\tau}^{e} \sim 0.5 p_{\tau}^{B} \text{ at high } p_{\tau});$

p_{T} -differential v_{2} of Heavy Flavours

- D measons:
 - \checkmark measured with event plane method; consistency among different D mesons; similar v_2 magnitude of D mesons and charged hadrons;
- Heavy-flavour electron:

 \checkmark measured with event plane method;

- non-zero v_2 (3 sigma effect) for D mesons in $2 < p_T < 6$ GeV/*c*, heavy flavour electrons in $2 < p_T < 3 \text{ GeV}/c$ and heavy flavour muons in $3 < p_T < 5 \text{ GeV}/c$;
- v_2 of heavy-flavour muons at forward rapidity (-4< η <-2.5) is consistent with that of heavyflavour electrons at mid-rapidity ($|\eta| < 0.9$) within uncertainties.

p_{T} -differential R_{pA} of Heavy Flavours

 Within uncertainties, both the results from D mesons and heavy-flavour electrons are around unity, and also consistent with theoretical predictions;