

Outline

- I Introduction
- **II Detectors**
- **III Selected physics results :**
 - 1. Open heavy flavour
 - 2. Hidden heavy flavour
 - 3. Beam Energy Scan
- **IV Conclusions**
- V Outlook

Beam Energy Scan at RHIC:

- * Search for onset of QGP signatures
- * Search for signals of the phase boundary
- * Search for the QCD critical point

I Introduction

Lattice QCD prediction :

The Hadron <-> Quark Gluon Plasma (QGP) transition

Goal of ultrarelativistic heavy ion physics:

Study QCD matter under extreme conditions of densities and Temperatures

Map out the QCD phase diagram and measure QGP characteristics

Reproduce a phase transition of the early universe at 10⁻⁶ sec after the Big Bang, between hadrons and quarks and gluons (Quark-Gluon-Plasma)

Dubatech Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France

PH^{*}ENIX 3

STAR

II PHENIX PHENIX Detector 1.2>η>2.2 |η|<.35 Central Magnet μ⁺μ⁻ RPC3 RPC3 North Muon Maan South Afuon Afagner Central Magnet e+ MPC 10.9 m BBC ZDC South ZDC North (F)VTX MuID MuID Beam View East West 36 ft MuTr RPC1 - Energy in calorimeter - Electron ID in RICH |eta|<3.5 Side View South North - Drift chamber: tracking 18.5 m = 60 ft- Myons at |eta| (1.2,2.2) - Central Vertex Detector and Forward Vertex Detector Subatech Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France STAR PHENIX 5

* Spatial anisotropy of interaction region -> momentum anisotropy

* Measured as coefficients v_n of the Fourier series (v1 - directed flow, v2 - elliptic flow, ...)

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Phi_n)]$$
$$v_n = < \cos[n(\phi - \Phi_n)] >$$

Jubatech

Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France STAR PH ENIX 10

At which energy does J/Psi suppression turn off?

Color Evaporation Model (CEM) estimate for p+p reference used for 39, 62 GeV

 $R_{AA} \mbox{ of J/Psi}$ is suppressed in similar way at 39, 62 and 200 GeV

Jubatech

Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France STAR

J/Psi BES PHENIX

PHENIX: Quarkonia in d+Au

PHENIX arXiv: 1305.5516

J/Psi compared to "open charm-like" dimuons - SPS

Would be interesting to see J/Psi/open charm at low energies too

S.K., New J. of Physics, Vol. 3, (2001), 16, arXiv 0004138 Here the enhancement of dimuons in the intermediate mass(mu+ mu-) region (1.6 -2.5 GeV) was assumed to be due to open charm

Consequences: The J/Psi over the DDbar estimate is suppressed already at 1 GeV/fm^3, namely near the critical energy density for the QGP phase transition

-> open charm and quarkonia measurement at SPS energy needed to interpret the SPS data and Beam Energy Scan below

-> * AFTER/CHIC (F Fleuret et al) * NICA

Sonia Kabana, XXIX-th Workshop on High Energy Physics, 26-28 June 2013, Protvino

Upsilon in Au+Au 200 GeV (STAR)

Y(1S+2S+3S) in Au+Au collisions at 200 GeV :

* No suppression in most peripheral collisions

* Exhibits suppression in more central collisions increasing with centrality

* The suppression observed is consistent with model assuming Y(2S) and Y(3S) suppression

Model by Strickland et al (PRL 107, 132301, 2011, Nucl. Phys. A879 (2012) 25, arXiv:1112.2761) :

Assumes T_0 = 428-442 MeV and $1/4\pi < \eta/S < 3/4\pi$

PHENIX 25

state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$	_
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17	

STAR

Upsilon in d+Au 200 GeV (PHENIX)

III.3 Beam Energy Scan

Subotech Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France STAR PHENIX 27

At which energy does jet quenching switch off?

Jubatech

Directed flow of protons

Directed flow slope is sensitive to a 1st order

STAR: v₁ slope changes sign from positive to negative between 7.7 and 11.5 GeV

Pions and antiprotons have always negative v1

Net-proton v₁ slope shows a minimum around 11.5-19.6 GeV

UrQMD model (model without phase transition) cannot explain the data

STAR

рн∦е**N**IX 31

IV Conclusions

- Several sQGP signatures observed in central Au+Au collisions at high energy from STAR and PHENIX at RHIC

Open Heavy Flavor:

- "Jet quenching" of D mesons and of electrons from charm and beauty quarks in central Au+Au 200 GeV at high pT

- Hint of less suppression for beauty than for charm in Au+Au

- Finite elliptic flow of electrons from open charm and beauty in Au+Au 200 GeV further constrain models

Quarkonia suppression:

- J/Psi suppression and elliptic flow:

- * Suppression over open charm at low pt, need to understand CNM (d+Au)
- * Elliptic flow: no dominant production via recombination

- Upsilon suppression in central Au+Au collisions 200 GeV, consistent with suppression of Y(2S+3S), like in the LHC

Beam Energy Scan:

- Dissapearance of key QGP signatures at low energies

Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France 🤿

Thank you very much for your attention

Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France STAR PHENIX 36

Outlook BES-II program (>2017)

BES-II:

* Fine energy scan of region \sqrt{s} <~ 20 GeV

* Increased luminosity ~ 3-10 times

* STAR upgrade to extend mid-rapidity coverage

Fixed Target proposal:

* Energy scan of region down to $\sqrt{s} \sim 3 \text{ GeV}$

* Annular 1% Au target inside STAR beam pipe, and 2 m away from the interaction point center

* Data taking at beginning of each fill in collider mode

Table 2. Estimates of the isotropic and anisotropic dissociation scales for the J/ψ , χ_{c1} , $\Upsilon(1s)$, $\Upsilon(2s)$, $\Upsilon(3s)$, χ_{b1} , and χ_{b2} . Estimates are taken from Refs. 129, 130

State	Isotropic QGP ($\xi=0$)	Anisotropic QGP (ξ =1)
J/ψ	307 MeV	374 MeV
χ_{c1}	< 192 MeV	210 MeV
$\Upsilon(1s)$	593 MeV	735 MeV
$\Upsilon(2s)$	228 MeV	290 MeV
$\Upsilon(3s)$	< 192 MeV	< 192 MeV
χ_{b1}	265 MeV	351 MeV
χ_{b2}	< 192 MeV	213 MeV

M Strickland et al 1302.2180

Sonia Kabana, QGP-France workshop, 9-11 September 2013, Etretat, France STAR PHEENIX 40