

Institut de recherche sur les lois fondamentales de l'Univers

Elliptic flow of J/ψ at forward rapidity in Pb-Pb collisions at 2.76 TeV with the ALICE experiment

Hongyan Yang¹ for the ALICE Collaboration

¹SPhN/Irfu/CEA, Saclay, France 26/09/2012

Rencontres QGP-France-12 Etrotat 25-28 sept. 2012

Rencontres QGP-France-2012, Étretat, France

0.8

0.6

0.4

0.2

0

2

3

- No strong centrality dependence in most central collisions
- Less suppression at low *p*_T
- Described by various models including a large fraction of regenerated J/ψ from charm quarks in the QGP

hongyan.yang@cern.ch | J/ψ elliptic flow at forward rapidity in Pb-Pb collisions with ALICE | 26/09/2012, Étretat, France

Total with shadowing Primordial J/ψ

Regenerated J/w

----- Regenerated J/w

Total without shadowing

5

6

P Irfu

J/ψ elliptic flow at RHIC

At RHIC energy \rightarrow results favor zero or very small v_2

$v_2^{J/\psi}$ in Au-Au collisions at 200 GeV at b = 7.8 fm

pQCD and thermal scenarios \rightarrow small v_2 at RHIC

If charm quark participates in collective motion of QGP, its v_2 will be transferred to J/ ψ when charm quarks recombine

S Irfu

J/ψ elliptic flow at the LHC energies

Y. Liu, N. Xu, P. Zhuang, Nucl. Phys. A834 (2010) 317c

Same authors: P. Zhuang and co., 2012 prediction (priv. comm.)

a significant elliptic flow may be expected at LHC energies due to the significant contribution of (re)generated J/ψ

ALICE experimental setup

J/ψ in Pb-Pb collisions at 2.76 TeV

Event selection

- Unlike sign muon trigger
- Require |Z_{vtx}| < 10 cm
- Centrality: from a geometrical Glauber model fit of the VZERO amplitude
 - Centrality bins used for this study [5, 20]%, [20, 40]%, [40, 60]% [60, 90]%, [20, 60]%

J/ψ candidates selection

- J/ψ→ μ⁺μ⁻ with muons measured in the muon spectrometer
 - Opposite-sign dimuons rapidity
 2.5 < y^{µ+µ-} < 4
 - Decay daughters:
 - 1) muon track with low $p_{\rm T}$ trigger matching ($p_{\rm T} > 1 \text{ GeV}/c$) 2) $-4 < \eta^{\mu^+/\mu^-} < -2.5$ 3) 170 $< \theta_{\rm abs} < 178$

J/ψ signal (yield) extraction

- Fit the invariant mass spectrum of opposite sign dimuons
 - Signal
 - Crystal Ball (CB) function
 - Signal shape fixed via the J/ψ production in pp simulation
 i.e. non-Gaussian tail
 - Extended Crystal Ball (CB2) function
 - Signal shape fixed via the reconstructed J/ ψ from a MC sample with embedding 1 simulated J/ ψ in each real MB Pb-Pb event

i.e. non-Gaussian tails on both sides of the J/ ψ peak

- Background
 - Variable width Gaussian (VWG)
 - 3rd order polynomial (POL3) function
- Fitting range
 - Varies for systematics study

Next step \rightarrow J/ ψ flow study

Event plane method or not, is a problem

 M Luzum, J-Y Ollitrault, 'The event-plane method is obsolete' http://arxiv.org/abs/1209.2323

Is it a death sentence of event plane (EP) method?

- Arguments from both sides:
 - Reason to **support the drop** of the EP method:
 - Non-flow effects and flow fluctuation when particle of interest (POI) and reference particles (RP) for EP shares common acceptance
 - When event plane resolution is high, flow fluctuation is larger; higher order harmonics, larger the fluctuation effects
 - Reasons to **against the abandon** of the EP method:
 - One can avoid acceptance overlap between POI and RP to suppress nonflow effects
 - There are detector limitations: when EP resolution is not high, flow fluctuation could become under-control
 - Statistically, large statistical uncertainty with SP and QC methods
 - For elliptic flow, flow fluctuation effects is less than higher order harmonics a few percent difference from EP results & true v_2
 - EP is more suited and might be the only possibility for some specific cases
- For the moment: **NOT YET completely black and white!**

J/ψ elliptic flow analysis methods

- With event plane (by VZERO-A, no TPC in the trigger cluster)
 - Standard event plane method (n $\Delta \varphi$ method): $\Delta \varphi = \phi \Psi_{EP,2}$
 - $dN^{J/\psi}/d\Delta\varphi = A \times (1 + 2v_2 \cos 2\Delta\varphi)$
 - Invariant mass fit technique: $v_2^{\mu^+\mu^-} = \langle \cos 2(\Delta \varphi) \rangle$
 - $v_2^{\mu^+\mu^-} = (S \times v_2^{sig} + B \times v_2^{bkg})/(S+B)$
 - → Finally, correct v_2^{obs} by the event plane resolution σ_{EP}

$$v_2 = v_2^{obs} / \sigma_{EP}$$

Method w/o event plane – a cumulant method

- 2-particle correlation method with detectors with large η gap: dimuon + SPD tracklets + VZERO-A for dimuon v_2
- Combine with *invariant mass fit technique* for extraction of v_2^{sig}
 - Largely limited by statistical uncertainties

N Borghini, P M Dinh, J-Y Ollitrault: PRC63 (2001) 054906, PRC64(2001)054901

Event plane determination from VZERO

 Ψ

- 2 arrays of 32 scintillators on both side of IP: VZERO-A: 2.8 < η < 5.1 VZERO-C: -3.7 < η < -1.8
 VZERO-A & MUON: η gap ~ 5.3
- Event plane from VZERO-A¹
 second harmonics

$$Q_{n,x} = \frac{\sum_{i=0}^{31} S_i \cos(n\phi_i)}{\sum_{i=0}^{31} S_i}$$
$$Q_{n,y} = \frac{\sum_{i=0}^{31} S_i \sin(n\phi_i)}{\sum_{i=0}^{31} S_i}$$
$$_{EP,2} = \frac{\arctan(Q_{2,x}, Q_{2,y})}{2}$$

A. M. Poskanzer and S. A. Voloshin, Phys Rev. C58, 1671

Correction factor

 $0.548 \pm 0.003 \text{ (stat)} \pm 0.009 \text{ (syst)}$

 $0.610 \pm 0.002 \text{ (stat)} \pm 0.008 \text{ (syst)}$

 0.451 ± 0.003 (stat) ± 0.008 (syst)

 $0.185 \pm 0.005 \text{ (stat)} \pm 0.013 \text{ (syst)}$

 $0.576 \pm 0.002 \text{ (stat)} \pm 0.008 \text{ (syst)}$

Centrality

5% - 20%

20% - 40%

40% - 60%

60% - 90%

• EP flattened (~ 1% fluctuation) and resolution obtained from 3 sub-events method

$$\langle \cos[n(\Psi_2^a - \Psi_r)] \rangle = \sqrt{\frac{\langle \cos[n(\Psi_2^a - \Psi_2^b)] \rangle \langle \cos[n(\Psi_2^a - \Psi_2^c)] \rangle}{\langle \cos[n(\Psi_2^b - \Psi_2^c)] \rangle}}$$

- Event plane resolution in a large centrality bin
 - Estimated by a weighted sum of event plane 20%-60% resolutions using J/ ψ yields as weights in its sub-centrality bins

¹VZERO-C was not used due to acceptance overlap with the muon spectrometer ($-4.0 < \eta < -2.5$) to avoid autocorrelation effects

J/ψ elliptic flow extraction

Methods using VZERO-A event plane

6-Δφ method

invariant mass fit technique

2 ≤ p_T < 4 GeV/c hint of non-zero v₂ with significance ~ 2.2 sigma

J/ ψ v₂ in centrality 20%-60%

2 ≤ p_T < 4 GeV/c: contrary to STAR measurement hint of non-zero v₂ with significance ~ 2.2 sigma

$J/\psi v_2$ in centrality 20%-60%

 versus calculations from parton transport models: in agreement within errors

Cumulant (2-particle correlation) method

- References: N Borghini, P M Dinh, J-Y Ollitrault: PRC63 (2001) 054906, PRC64(2001) 054901, Experimental implementation: PHENIX Collab PRL94 (2005) 232302 $J/\psi v_2$ study without event plane $V_{n,AB} \equiv \frac{\langle Q_{n,A} Q_{n,B}^{\Box} \rangle}{\langle N_A N_B \rangle} - \frac{\langle Q_{n,A} \rangle}{\langle N_A \rangle} \frac{\langle Q_{n,B}^{\Box} \rangle}{\langle N_B \rangle} = V_{n,A} V_{n,B}$
 - **Advantages**
 - Large η gap allows non-flow suppression $v_{n,B+c} = \frac{\langle N_B \rangle v_{n,B} + \langle N_C \rangle v_{n,C}}{\langle N_D \rangle + \langle N_L \rangle}$ $v_{n,B}^2 = \frac{V_{n,A,B} V_{n,B,C}}{\langle N_D \rangle + \langle N_L \rangle}$
 - No requirement on full azimuthal coverage
 - no event plane correction needed \rightarrow avoid systematical uncertainties from σ_{FP} corr.
 - direct correlation of dimuon, SPD tracklets and VO
 - Disadvantages
 - need high statistics in each centrality/invariant mas
 - Study dimuon v_2 in p_T bins (20%-60%): 0-2, 2-4, 4-6, 6-10 GeV/c
 - v_2 extraction in 2-4 GeV/c possible \rightarrow possibly due to stronger flow signal and not too low statistics
 - Large fluctuation in lower $p_{\rm T}$ bin (stat. OK, but weak flow)
 - Large statistical uncertainty in higher $p_{\rm T}$ bins (too low stat.)

$$\langle N_B \rangle + \langle N_C \rangle$$

$$\bigvee_{n,B} = \underbrace{\bigvee_{n,AC}}_{N,AC}$$

$$\bigvee_{n,B} = \underbrace{\bigvee_{n,AC}}_{N,AC}$$

$$\bigvee_{n,B} = \underbrace{\bigvee_{n,AC}}_{N,AC}$$

$$\bigvee_{n,B} = \underbrace{\bigvee_{n,AC}}_{N,AC}$$

$$(N_B) + \langle N_C \rangle$$

$$(N_B) + \langle$$

$6-\Delta\phi$ method vs. inv. mass fit technique

Agreement achieved between two methods

Irfu

Invariant mass fit technique is used for $J/\psi v_2$ in finer centrality bins (5%-20%, 20%-40%, 40%-60% and 60%-90%)

Centrality dependence of $J/\psi v_2$

• Non-zero v_2 in central and semi-central collisions

 Low p_T J/ψ has almost v₂ ≈ 0: apply a cut at p_T = 1.5 GeV/c to remove most of the J/ψ that contribute with very small v₂ and leave the bulk of the J/ψ where the v₂ is maximum

Summary

$J/\psi v_2$ at forward rapidity in Pb-Pb collisions at 2.76 TeV by ALICE

 Hint of non-zero v₂ in (20%-60%) collisions at intermediate p_T: 2 ≤ p_T < 4 GeV/c

contrary to zero or small v_2 observed at RHIC

 Indication of non-zero v₂ in semi-central (20%-40%) collisions at intermediate p_T:

 $2 \le p_T < 6 \text{ GeV}/c$: with significance ~ 3.0 sigma

 Non-zero v₂ for J/ψ with p_T ≥ 1.5 GeV/c in central (5%-20%) and semi-central (20%-40%) collisions

Conclusions

- In 20%-60% collisions (same as RHIC measurements)
 - ALICE measured J/ψ v₂: in qualitative agreement with transport models with 50% regeneration
 - At high p_T: the flow of B feed-down J/ψ might have a non-negligible impact on the measured inclusive v₂

- In central (5%-20%) and semi-central (20%-40%) collisions
 - Indication of non-zero v₂ favors regeneration mechanism which may contribute significantly to the production of J/ψ in more central Pb-Pb collisions at LHC energy
- Complement to $J/\psi R_{AA}$ results:
 - The non-zero $J/\psi v_2$ at intermediate p_T and less suppression with respect to RHIC are indications for an observation of regeneration from charm quarks in the QGP phase

Outlook

- The upgrade program of MUON spectrometer \rightarrow allow a more precise measurement of J/ ψ v_2
- Higher statistics
 - \rightarrow Lower statistical uncertainty
 - \rightarrow Allow measurements with standard SP and QC methods

Thanks!

Backup slides

Results from other methods

- Hadronization model
- Event plane (EP) method with VZERO-A
 - EP flattening
 - EP resolution in various centralities used in these analyses
- $6-\Delta \phi$ method in centrality 20% 60% vs. other methods
 - $2-\Delta \phi$ method: anisotropy in/out-of-plane
- Differential $J/\psi v_2$ in various centrality bins

J/ψ suppression at RHIC and LHC

- By statistical hadronization model
 - More (re)generated J/ψ at LHC energy comparing to RHIC energy in the hadronization phase
 → leads to less suppression

Braun-Munzinger & Stachel, Nature Vol. 448 (2007)

Elliptic flow with event plane method

- Spatial anisotropy is converted via multiple collisions into an anisotropy of momentum distribution
- The azimuthal dependence of the particle yield can be written in the form of a Fourier series:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_{\rm t}dp_{\rm t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_R)] \right)$$
$$v_2 = \left\langle \cos[2(\phi - \Psi_{RP,2})] \right\rangle$$

Event plane flattening from VZERO

- Event plane flattening steps:
 - gain equalization ring by ring
 - recentering, twisting and rescaling of VZERO EP cumulant

 $Q_{2,x} = \langle Q_{2,x} \rangle + A^+ [\cos 2\Psi_2 + \Lambda^+ \sin 2\Psi_2]$ $Q_{2,y} = \langle Q_{2,y} \rangle + A^- [\cos 2\Psi_2 + \Lambda^- \sin 2\Psi_2]$

where the parameters $\langle Q_{2,x} \rangle$, $\langle Q_{2,y} \rangle$, A^+ , A^- , Λ^+ and Λ^- are extracted from the mean and RMS of the $Q_{2,x}, Q_{2,y}$ and $Q_{2,x}Q_{2,y}$ distributions

• finally remove residual fluctuations due to azimuthal segmentation of VZERO rings with Fourier flattening technique using one single parameter $\langle \sin 8\Psi_{EP,2} \rangle$, represents the 8th Fourier moment of the event-plane distribution

By ALICE-VZERO Lyon group

Event plane from VZERO-A

counts

- Event plane flatness
 - Deviation from constant within 1% deviation
- Event plane resolution
 - Two sets of 3 sub-events in MB events in the same runs for systematics
 - TPC + full VOA + full VOC
 - V0A + two rings in V0C

- Event plane resolution within large centrality bins
 - Resolution weighted by the number of J/ψ in smaller centrality bins

Centrality	Correction factor
5% - 20%	$0.548 \pm 0.003 \text{ (stat)} \pm 0.009 \text{ (syst)}$
20%- $40%$	$0.610 \pm 0.002 \text{ (stat)} \pm 0.008 \text{ (syst)}$
40%– $60%$	$0.451 \pm 0.003 \text{ (stat)} \pm 0.008 \text{ (syst)}$
60% - 90%	$0.185 \pm 0.005 \text{ (stat)} \pm 0.013 \text{ (syst)}$
20%– $60%$	$0.576 \pm 0.002 \text{ (stat)} \pm 0.008 \text{ (syst)}$

S Irfu

2- $\Delta \phi$ method: anisotropy in/out-of-plane

- $2-\Delta \varphi$ method:
 - A direct calculation from J/ψ yield anisotropy in-plane and out-of-plane
 - Correct v_2^{obs} by the event plane resolution σ_{EP}

Centrality scan: differential J/ ψv_2

Signal extraction functions

- J/ψ extraction
 - Signal:
 - CB = Crystal Ball function with fixed parameters: $\sigma_{CB}=0.98, n_{CB}=5.2$
 - CB2 = extended CB function with fixed parameters - $\alpha = 0.973$, n = 5.806, $\alpha_{up} = 1.662$, $n_{up} = 3.645$
 - Background:
 - VWG = Variable Width Gaussian sigma = par[2]+par[3]*((x[0]-par[1])/par[1]) VWG = par[0]*exp(-(x[0]-par[1])*(x[0]-par[1])/(2.*sigma*sigma))
 - Pol = 3rd degree polynomial par[0] + par[1]*x[0] + par[2]*x[0]*x[0] + par[3]*x[0]*x[0]*x[0]