Associated production of a photon and a heavy quark in heavy ion collisions

Rencontres QGP-France 2012

Tzvetalina Stavreva

September 26, 2012

$\gamma + Q$ in A - A Collisions

- Hard Probes excellent tools for testing properties of QGP
- Compare to p p observables to estimate parton energy loss
- Can have
 - Medium sensitive processes Jets, hadrons, ...
 - Medium insensitive processes photons, Z bosons, ...
- Combine both types of observables in one process
- γ medium insensitive \to E^γ not modified a gauge for initial energy of jet
- (heavy) jet probes (massive) parton energy loss
- ullet Concentrate on heavy quarks Q (charm/bottom)
- Help clarify energy loss in the heavy quark sector and the expected hierarchy $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$ [Dokshitzer Kharzeev 2001]

$\gamma + Q$ Energy Loss Implementation

- ullet Modify E_Q^{vac} so that $E_Q^{med}=E_Q^{vac}-\epsilon_Q$
- ullet ϵ_Q computed on an event by event basis, with quenching weight obtained perturbatively [Armesto Dainese Salgado Wiedemann 2005]
 - $P(\epsilon) = p_0 \delta(\epsilon) + p(\epsilon)$
 - through multiple soft scattering BDMPS-Z
 - Mass dependence enters as m_Q/E_Q
- Parton keeps its direction:

$$p^{vac} = p_T(\cosh y, \vec{e}_T, \sinh y) \rightarrow p^{med} = [p_T - \epsilon](\cosh y, \vec{e}_T, \sinh y)$$

Comparing energy loss

- Expected hierarchy observed
- $\bullet \ \ R_{AA}^g < R_{AA}^q < R_{AA}^c < R_{AA}^b$
- ullet Differences for quarks disappear at large p_T

2 particle final state observables

- The two-particle final state further offers a range of observables
- Photon-jet energy asymmetry:

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \Delta \phi > \pi/2$$

• Momentum imbalance:

$$z_{34} = -\frac{\vec{p}_{T\gamma}.\vec{p}_{TQ}}{p_{T\gamma}^2}$$

Photon-jet pair momentum:

$$q_{\perp} = |\vec{p}_{T\gamma} + \vec{p}_{TQ}|$$

Need to move to NLO to utilize them

NLO Energy Loss

- p_{TQ} spectra suppressed (naturally suppression increases with larger ω_c)
- ullet $p_{T\gamma}$ spectrum almost unchanged at small ω_c

Photon-jet pair momentum

LO direct production:

$$q_{\perp}^{M} = p_{T_{Q}}^{T_{Y}} - p_{T_{Q}}^{M}$$
$$= p_{T_{Q}}^{V} - (p_{T_{Q}}^{V} - \epsilon)$$
$$= \epsilon$$

- At NLO however
 - ullet if $p_{T\gamma}>p_{TQ}$, $q_T^M\sim q_T^V+\epsilon$
 - ullet if $p_{TQ}>p_{T\gamma}$, $q_T^M\sim q_T^V-\epsilon$
- Effect largely cancels out

$A_J \& z$

•
$$z_{LO}^M = 1 - \frac{\epsilon}{p_{Tx}}$$

•
$$z_{LO}^{M}=1-\frac{\epsilon}{p_{T\gamma}}$$

• $A_{J}^{M,LO}=\frac{\epsilon}{2p_{T\gamma}-\epsilon}$

nPDF effects

- Overlap of $\gamma + b$ & $\gamma + c$ within different nPDFs
- Need better constrained gluon nPDF!

nPDFs

- Difference between $p-p\ \&\ A-A$ observables also due to nPDF effects
- ullet Desentangle parton energy loss from initial state nPDF effects ightarrow need well constrained nPDFs

Nuclear Gluon Distribution

- The nuclear gluon distribution only weakly constrained by data $(F_2^{Sn}(x,Q^2)/F_2^C(x,Q^2))$, NMC collaboration)
- Represented in large error bands (EPS09,HKN07)!
- ullet Poorly constrained in x < 0.02 and x > 0.1
- Currently no error bands for nCTEQ perform a series of global fits to assess it

gluon nCTEQ decut3gx fits

 • Vary $c_1 = c_{1,0} + c_{1,1} (1 - A^{-c_{1,2}})$ influencing small x behavior of gluon nPDF

Name	(initial) fit parameter	$c_{1,1}$	$c_{1,2}$
decut3	free	-0.29	-0.09
decut3g1	fixed	0.2	50.0
decut3g2	fixed	-0.1	-0.15
decut3g3	fixed	0.2	-0.15
decut3g4	free	0.2	-0.15
decut3g5	fixed	0.2	-0.25
decut3g7	fixed	0.2	-0.23
decut3g8	fixed	0.35	-0.15
decut3g9	fixed – free proton	0.0	_

• Each fit equally acceptable with an excellent $\chi^2/\text{dof}=0.88-0.9$.

gluon nCTEQ decut3gx fits

- The different fits cover quite a range of nuclear corrections
- ullet Each fit will come with own error band o individual fits underestimate true uncertainty

gluon Nuclear Corrections

- At larger Q error still large
- Different nPDF sets, quite different
- Need to distinguish between them

charm nPDF

- Standard approach: HQ PDFs are generated radiatively ightarrow $R_g^{Pb} \simeq R_c^{Pb}$
- $\bullet \ \ \mathsf{For} \ u_v, \ R_{u_v}^{\mathit{EPS}} \simeq R_{u_v}^{\mathit{HKN}} \simeq R_{u_v}^{\mathit{nCTEQ}}$

Hard Processes constraining $g^{p/A}(x, Q)$

- Inclusive jet data (like Tevatron for free gluon)
- Inclusive hadron production
- Heavy quark; Quarkonium production
- Isolated direct photons
- Direct Photons + jet
- Direct Photon + Heavy Quark Jet

How can $\gamma + Q$ help?

- At LO only one hard scattering subprocess Compton subprocess g-Q initiated + fragmentation contributions
- Standard approach: HQ PDFs are generated radiatively \Rightarrow $R_g^{Pb} \simeq R_c^{Pb}$

• Direct access to gluon nPDF

$\gamma + Q$ production in p - Pb collisions @ the LHC

- g & Q initiated subprocesses dominate (> 80%) \Rightarrow sensitivity to gluon and HQ PDFs.
- Using an integrated yearly luminosity of $\mathcal{L}=10^{-1}pb^{-1}$ a precursory number of events per year at EMCal for $\gamma+c$ is $\mathcal{N}_{\gamma+c}^{pPb}=11900$ ($\sigma_{\gamma+c}^{pPb}=119nb$) and for $\gamma+b$ is $\mathcal{N}_{\gamma+b}^{pPb}=2270$ ($\sigma_{\gamma+b}^{pPb}=22.7nb$)

Constraining the gluon nPDF

$$R_{pA}^{\gamma Q} = \frac{\sigma(pA \to \gamma \ Q \ X)}{A \ \sigma(pp \to \gamma \ Q \ X)}$$

- $R_{pA}^{\gamma Q} \simeq R_g^{Pb}$ in the x region probed at ALICE
- Measurements of $\gamma+Q$ with appropriate error bars will allow to distinguish between the different nPDF sets and place useful constraints on the gluon nPDF (arXiv:1012.1178)

$\gamma + Q$ production in p - Pb collisions @ RHIC

- g & Q initiated subprocesses dominate again ⇒ sensitivity to gluon and HQ PDFs.
- A precursory number of events per year for $\gamma+c$ $\mathcal{N}^{dAu}_{\gamma+c}=28000$ and for $\gamma+b$ $\mathcal{N}^{dAu}_{\gamma+b}=24$

Constraining the gluon nPDF

$$R_{pA}^{\gamma Q} = \frac{\sigma(pA \to \gamma \ Q \ X)}{A \ \sigma(pp \to \gamma \ Q \ X)}$$

- At RHIC higher x region is probed
- $R_{dAu}^{\gamma Q} \simeq R_g^{Au}$ in the x region probed at RHIC
- Complimentary information to ALICE
- Measurements of $\gamma+Q$ with appropriate error bars will allow to distinguish between the different nPDF sets and place useful constraints on the gluon nPDF (arXiv:1012.1178)

Summary

- In AA collisions $\gamma + Q$ can be used to probe HQ energy loss
- Access the mass hierarchy of parton energy loss
- \bullet In pA collisions photon + HQ production can be used to constrain nuclear gluon PDF
- (In pp collisions can be used to constrain HQ PDF)