The future in H.I. QM2012 + ESPG Cracow + personal biases Andry Rakotozafindrabe

Rencontres QGP France - Étretat, Sept. 2012

« Faster, Higher, Stronger »

[H. Appelshäuser, ESPG Symposium, Cracow, Sept. 2012]

- unique opportunities to study QCD at µ_B ~ 0 in H.I. collisions via hard and electroweak probes
- initial T and energy density : the highest achievable in the lab
- large $\sqrt{s_{NN}}$ → abundant production of hard probes
- first principle methods (pQCD, Lattice Gauge Theory) most applicable

[H. Appelshäuser, ESPG Symposium, Cracow, Sept. 2012]

- unique opportunities to study QCD at $\mu_B \sim 0$ in H.I. collisions via hard and electroweak probes
- initial T and energy density : the highest achievable in the lab
- large $\sqrt{s_{NN}}$ → abundant production of hard probes
- first principle methods (pQCD, Lattice Gauge Theory) most applicable

« The top priority for future quark matter research in Europe is the full exploitation of the physics potential of colliding heavy ions in the LHC »

Conclusions of the Heavy-Ion Town meeting (June 2012, CERN), in the preparation of the European Strategy Preparatory Group for Particle Physics (ESPG)

[H. Appelshäuser, ESPG Symposium, Cracow, Sept. 2012]

- unique opportunities to study QCD at µ_B ~ 0 in H.I. collisions via hard and electroweak probes
- initial T and energy density : the highest achievable in the lab
- large $\sqrt{s_{NN}}$ → abundant production of hard probes
- first principle methods (pQCD, Lattice Gauge Theory) most applicable

« The top priority for future quark matter research in Europe is the full exploitation of the physics potential of colliding heavy ions in the LHC »

Conclusions of the Heavy-Ion Town meeting (June 2012, CERN), in the preparation of the European Strategy Preparatory Group for Particle Physics (ESPG)

- currently approved program (1 nb⁻¹) : essential step towards an era of precision measurements
 - extension to 10 nb⁻¹ : full exploitation of LHC physics potential + experiments complementarity

➡ H.I. beyond LS3

LHC - short term (2013 - 2014)

p-Pb + Pb-p (Jan. 2013) : CNM effects

- ▶ $\sqrt{s} = 5$ TeV, target luminosity 30 nb⁻¹
- 22 days of stable beams

2010	Pb-Pb	O(10) µb ⁻¹
2011	Pb-Pb	O(150) µb ⁻¹

LHC - short term (2013 - 2014)

Long Shutdown 1 (2013 - 2014) :

- ▶ 1 year $\frac{1}{2} \Rightarrow$ LHC design energy (p+p 14 TeV, Pb+Pb 5.5 TeV)
- detector maintenance, completion and (small) upgrades (e.g. ALICE-TRD, -CAL, ATLAS additional pixel layer, ...)

LHC - short term (2013 - 2014)

Long Shutdown 1 (2013 - 2014) :

- ▶ 1 year $\frac{1}{2} \Rightarrow$ LHC design energy (p+p 14 TeV, Pb+Pb 5.5 TeV)
- detector maintenance, completion and (small) upgrades (e.g. ALICE-TRD, -CAL, ATLAS additional pixel layer, ...)

Followed by 3 years of data taking at the LHC design energy

LHC - mid/long term

LHC - mid/long term

ALICE LoI (Sept. 2012) : upgrade ITS, TPC, Muon Arm, ...

- ✓ improve low p⊤ tracking, vertexing, PID capabilities, reduce material budget
- many key observables do not allow low-level triggering high rate capability of detectors and readout system
- ALICE LoI addendum : Muon Forward Tracker (MFT), VHMPID, FoCal

ALICE ITS upgrade

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Conceptual Design Report for the Upgrade of the ALICE ITS

The ALICE Collaboration*

Version: CDR-0

new ALICE Inner Tracking System:

- \rightarrow 7 Si-layers (7 pixel or 3 pixel + 4 strip)
- → low material budget X/X_0 = 0.3% per layer (currently 1.14%)
- \rightarrow improve vertex resolution by factor 3
- \rightarrow improve low p_{T} tracking efficiency
- \rightarrow allow for 50 kHz readout

CERN-LHCC-2012-05 / LHCC-G-159

Parallel 6C: R. Lemmon Poster: G. Contin

Copyright CERN, for the benefit of the ALICE Collaboration. This article is distributed under the terms of Creative Commence Attribution License (CC-BY-3.0), which permits any use provided the original author(s) and source are credited.

*See Appendix A for the list of collaboration members

Harald Appelshäuser, Quark Matter 2012, Washington DC

ALICE ITS upgrade

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Conceptual Design Report for the Upgrade of the ALICE ITS

The ALICE Collaboration*

Version: CDR-0

This article is distributed under the terms of Creative Commence Attribution License (CC-BY-3.0), which

new ALICE Inner Tracking System:

- \rightarrow 7 Si-layers (7 pixel or 3 pixel + 4 strip)
- \rightarrow low material budget X/X₀ = 0.3% per layer (currently 1.14%)
- \rightarrow improve vertex resolution by factor 3
- → improve low p_T tracking efficie Belikov (ITS) → allow for 50 kHz readout

CERN-LHCC-2012-05 / LHCC-G-159

Parallel 6C: R. Lemmon Poster: G. Contin

*See Appendix A for the list of collaboration members

Copyright CERN, for the benefit of the ALICE Collaboration.

permits any use provided the original author(s) and source are credited.

ch of the ITS upgrade with half a Pb-Pb event sup

Harald Appelshäuser, Quark Matter 2012, Washington DC

7

17

MFT

Multiple scatterings in the absorbeur ~60X₀ ⇒ blur track extrapolation to vertex

MFT

Multiple scatterings in the absorbeur ~60X₀ ⇒ blur track extrapolation to vertex

- utilization : match μ-tracks with MFT clusters
 - secondary vertex
 measurement ⇒ charm/
 beauty separation
- prompt and non-prompt μ prompt separation ⇒
 additional π/K background rejection, S/B improvement

open heavy flavor with D/B separation

- utilization : match μ-tracks with MFT clusters
- secondary vertex measurement ⇒ charm/ beauty separation
 - prompt and non-prompt μ
 prompt separation ⇒
 additional π/K background
 rejection, S/B improvement

open heavy flavor with D/B separation

- utilization : match μ-tracks with MFT clusters
- secondary vertex measurement ⇒ charm/ beauty separation
 - prompt and non-prompt μ
 prompt separation ⇒
 additional π/K background
 rejection, S/B improvement

[H. Appelshäuser, ESPG Symposium, Cracow, Sept. 2012]

lets	- precision measurements: γ-Jet, b-Jet, Z-Jet, multi-Jet, PID fragmentation functions, TeV-scale jet quenching
۲ spectroscopy	- 1s, 2s, 3s states, onset-behaviour
Charmonia	- low $p_T J/\psi$ over wide rapidity range, ψ' , X_c
Heavy Flavors	- comprehensive measurement of D, D [*] , D _s , Λ_c , B, Λ_b : Baryon/Meson ratios down to low p_T , R_{AA} , v_2 accurate normalization for quarkonia
EM radiation	- low mass dileptons
Exotica	- anti- and hypernuclei > enter 10 nb ⁻¹ regime

[H. Appelshäuser, ESPG Symposium, Cracow, Sept. 2012]

Jets	- precision measurements: γ-Jet, b-Jet, Z-Jet, multi-Jet, PID fragmentation functions, TeV-scale jet quenching
Y spectroscopy	- 1s, 2s, 3s states, onset-behaviour
Charmonia	- low $p_T J/\psi$ over wide rapid KOV (ITS)
Heavy Flavors	Comprehensive measure (QuarkOnia), B, Λ_b : L. Massacrier (QuarkOnia), MET, R_{AA} , v_2 A. Uras (MET), R_{AA} , v_2 ALICE
EM radiation	- low mass dileptons
Exotica	 - anti- and hypernuclei -> enter 10 nb⁻¹ regime

Baryon density

« The complementarity of LHC and RHIC is an essential resource in efforts to quantify properties of the Quark-Guon plasma. »

Conclusions of the Heavy-Ion Town meeting (June 2012, CERN), in the preparation of the European Strategy Preparatory Group for Particle Physics (ESPG)

« The complementarity of LHC and RHIC is an essential resource in efforts to quantify properties of the Quark-Guon plasma. »

Conclusions of the Heavy-Ion Town meeting (June 2012, CERN), in the preparation of the European Strategy Preparatory Group for Particle Physics (ESPG)

[J. Nagle, H. Z. Huang, QM 2012]

what is the nature of the QGP at $\mu_B > 0$?

- can we map the transition from plasma to hadron gas ?
- is there a critical point in the phase diagram ?
- does perfect fluidity disappear ?

QGP transition from strong (RHIC) to weak coupling (LHC?)

- do QGP properties change from T=170 to 400 MeV ?
- quasi-particles ?
- heavy flavor jet quenching, flow

« The complementarity of LHC and RHIC is an essential resource in efforts to quantify properties of the Quark-Guon plasma. »

Conclusions of the Heavy-Ion Town meeting (June 2012, CERN), in the preparation of the European Strategy Preparatory Group for Particle Physics (ESPG)

[J. Nagle, H. Z. Huang, QM 2012]

RHIC Beam Energy Scan II

what is the nature of the QGP at $\mu_B > 0$?

- can we map the transition from plasma to hadron gas ?
- is there a critical point in the phase diagram ?
- does perfect fluidity disappear ?

QGP transition from strong (RHIC) to weak coupling (LHC?)

- do QGP properties change from T=170 to 400 MeV ?
- quasi-particles ?
- heavy flavor jet quenching, flow

« The complementarity of LHC and RHIC is an essential resource in efforts to quantify properties of the Quark-Guon plasma. »

Conclusions of the Heavy-Ion Town meeting (June 2012, CERN), in the preparation of the European Strategy Preparatory Group for Particle Physics (ESPG)

[J. Nagle, H. Z. Huang, QM 2012]

RHIC Beam Energy Scan II

what is the nature of the QGP at $\mu_B > 0$?

- can we map the transition from plasma to hadron gas ?
- is there a critical point in the phase diagram ?
- does perfect fluidity disappear ?

QGP transition from strong (RHIC) to weak coupling (LHC?)

- do QGP properties change from T=170 to 400 MeV ?
- quasi-particles ?
- heavy flavor jet quenching, flow

RHIC II high Iuminosities

sphenix - ephenix

[J. Seele, QM2012] [sPHENIX, arXiv:1207.6378]

RPC3

Optimized for jets and photons/DY over a large range in rapidity ($\eta \sim 4$)

- Extension/modification of the central solenoid for B field
- GEM based tracking
- Diamond pixel for heavy flavor tagging
- Restack of current PHENIX EMCal

- upgrade option # 2
- also Cold Nuclear Matter studies, spin physics

STAR Inner TPC Readout Improved tracking and dE/dx PID Extend η coverage 1.0-1.7

[H. Z. Huang, J. Nagle, QM2012]

also designed for evolution into EIC detector

LHeC / eRHIC : electron-ion colliders

[A. L. Deshpande, C. Marquet, A. Stasto, J.H. Lee, QM 2012]

eA → eX

LHeC

eRHIC

RHIC @ BNL up to 140 (90) GeV ep (eA) INT Report: arXiv:1108.1713v2

LHC @ CERN up to 2 (1.2) TeV ep (eA) CDR arXiv:1206.2913

high p⊤ J/ψ, ψ(2S) Ƴ(1S, 2S, 3S)

A fixed target experiment at SPS, specialized in dilepton measurement

Charmonium family as a thermometer at SPS energy

- sequential melting ?
- χ_{c} is the missing piece (30% prompt J/ ψ yield)

Cold Nuclear Matter effects at SPS

- high luminosity in p-A
- wide (x_F) rapidity range -0.5 < y_{cms} < 2
- charmonia, open charm

Binding energy

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass $[GeV]$	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

F. Fleuret (CHIC)

high p⊤ J/ψ, ψ(2S) Ƴ(1S, 2S, 3S)

A fixed target experiment at SPS, specialized in dilepton measurement

Charmonium family as a thermometer at SPS energy

- sequential melting ?
- χ_{c} is the missing piece (30% prompt J/ ψ yield)

Cold Nuclear Matter effects at SPS

- high luminosity in p-A
- wide (x_F) rapidity range -0.5 < y_{cms} < 2
- charmonia, open charm

Binding energy

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass $[GeV]$	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

- fixed target experiment that will « recycle» the LHC halo, LS3 horizon
- extend RHIC physics to the high x region for gluons
- era of precision measurement : quarkonium observatory (10²-10³ x projected RHIC yields)
- complementary to LHeC

- fixed target experiment that will « recycle» the LHC halo, LS3 horizon
- extend RHIC physics to the high x region for gluons
- era of precision measurement : quarkonium observatory (10²-10³ x projected RHIC yields)
- complementary to LHeC

- fixed target experiment that will « recycle» the LHC halo, LS3 horizon
- extend RHIC physics to the high x region for gluons
- era of precision measurement : quarkonium observatory (10²-10³ x projected RHIC yields)
- complementary to LHeC

nuclear modification of g PDF in Pb

[LHeC CDR, J. Phys. G 39 (2012) 075001]

nuclear modification of g PDF in Au

« Relatively small cost extension to LHC program. No timeline yet, but LHCC recommended further studies. »

P. Newman, European Strategy Preparatory Group for Particle Physics (ESPG), Cracow, Sept 2012

- fixed target experiment that will « recycle» the LHC halo, LS3 horizon
- extend RHIC physics to the high x region for gluons
- era of precision measurement : quarkonium observatory (10²-10³ x projected RHIC yields)
- complementary to LHeC

nuclear modification of g PDF in Pb

[LHeC CDR, J. Phys. G 39 (2012) 075001]

nuclear modification of g PDF in Au

« Relatively small cost extension to LHC program. No timeline yet, but LHCC recommended further studies. »

P. Newman, European Strategy Preparatory Group for Particle Physics (ESPG), Cracow, Sept 2012

- fixed target experiment that will « recycle» the LHC halo, LS3 horizon
- extend RHIC physics to the high x region for gluons
- era of precision measurement : quarkonium observatory (10²-10³ x projected RHIC yields)
- complementary to LHeC

M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPN), J.P. Didelez (IPN), B. Genolini (IPN), E.G. Ferreiro (USC), F. Fleuret (LLR), C. Hadjidakis (IPN), J.P Lansberg (IPN), A. Rakotozafindrabe (CEA), P. Rosier (IPN), I. Schienbein (LPSC), E. Scomparin (Torino), U.I. Uggerhøj (Aarhus)

- first paper on physics opportunities arXiv: 202.6585
- webpage <u>after.in2p3.fr</u>
- 3rd meeting last may in Grenoble
- a larger workshop (10 days) at Trento in Feb. 2013

[LHeC CDR, J. Phys. G 39 (2012) 075001]

nuclear modification of g PDF in Au

« Relatively small cost extension to LHC program. No timeline yet, but LHCC recommended further studies. »

P. Newman, European Strategy Preparatory Group for Particle Physics (ESPG), Cracow, Sept 2012

- fixed target experiment that will « recycle» the LHC halo, LS3 horizon
- extend RHIC physics to the high x region for gluons
- era of precision measurement : quarkonium observatory (10²-10³ x projected RHIC yields)
- complementary to LHeC

M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPN), J.P. Didelez (IPN), B. Genolini (IPN), E.G. Ferreiro (USC), F. Fleuret (LLR), C. Hadjidakis (IPN), J.P Lansberg (IPN), A. Rakotozafindrabe (CEA), P. Rosier (IPN), I. Schienbein (LPSC), E. Scomparin (Torino), U.I. Uggerhøj (Aarhus)

- first paper on physics opportunities arXiv: 202.6585
- webpage <u>after.in2p3.fr</u>
- 3rd meeting last may in Grenoble
- a larger workshop (10 days) at Trento in Feb. 2013

[LHeC CDR, J. Phys. G 39 (2012) 075001]

nuclear modification of g PDF in Au

J.-P. Lansberg (AFTER)

« Faster, Higher, Stronger »

Olympic games, London, 2012

detector upgrades - ATLAS

- LS1(2013-14): additional pixel layer (Insertable B-layer, IBL) → improve b-tagging
- LS2(2017-18): fast tracking trigger (FTK)
 - \rightarrow improve high-multiplicity tracking
 - calorimeter readout and trigger upgrade
 - \rightarrow improve selectivity of photon and electron trigger
 - new forward muon detectors
 - \rightarrow improved muon triggers
- LS3(2022): replacement of inner detector (pixel and strips, reduced material budget)
 - \rightarrow improve tracking and resolution

Harald Appelshäuser, Quark Matter 2012, Washington DC

13

detector upgrades - CMS

By end of LS2:

- new pixel vertex detector
 - upgraded trigger
 - extension of forward muon system
 - refurbishment of hadron calo electronics
 - DAQ upgrade

Important for Heavy-ion running at 50 kHz:

- HLT input limitation (3kHz) requires 0.95 rejection at Level 1 (0.5 achieved so far)
- → dedicated R&D effort started on Level 1 upgrade, largely driven by HI needs and HI community

LS3 (2022):

- new inner tracker
- trigger and DAQ

Harald Appelshäuser, Quark Matter 2012, Washington DC