Upgrade of the ALICE ITS

РЦ(

Hubert CURIEN

Iouri Belikov

Precision measurement of the QGP parameters at $\mu_b = 0$ to fully exploit scientific potential of the LHC – unique in:

- large cross sections for hard probes
- high initial temperature

Main physics topics, uniquely accessible with the ALICE detector:

- measurements of heavy-flavour
 - study of QGP properties via transport coefficients (η/s , \hat{q})
 - hadronization mechanisms via baryon/meson ratio
- measurements of low-mass and low- p_T di-leptons
 - study of chiral-symmetry restoration
 - temperature, space-time evolution and equation of state
 - J/ψ , ψ ', and χ_c states down to zero \textit{p}_T in wide rapidity range
- statistical hadronization versus dissociation/recombination
 For main physics program: factor > 100 increase in statistics
 (maximum readout with present ALICE ~ 500 Hz)
 For triggered probes: increase in statistics by factor > 10

- High precision measurements of rare probes at low p_T, which cannot be selected with a trigger (large recorded data samples)
- Target:
 - Pb-Pb recorded luminosity

 \geq 10 nb⁻¹ \Rightarrow 8 x 10¹⁰ events

- ▶ pp (reference data) recorded luminosity $\geq 6 \text{ pb}^{-1} \Rightarrow 1.4 \times 10^{11} \text{ events}$
- Read out all Pb-Pb interactions at a maximum rate of 50kHz (i.e. L = 6x10²⁷ cm⁻¹s⁻¹), with a minimum bias trigger
- Significant improvement of vertexing and tracking capabilities of the detector (especially at low p_T)
- Perform online data reduction based on reconstruction of clusters and tracks (tracking used only to filter out clusters not associated to reconstructed tracks)
- Upgrade of the ALICE offline software
- Everything by after 2018 (LHC 2nd long shutdown)

Two main topics:

- thermalization and hadronization of heavy quarks in the medium
 - baryon-to-meson ratio, i.e. Λ_c/D , Λ_b/B
 - azimuthal anisotropy v₂
 - possible thermal charm production?
- in-medium energy loss
 - separately for D and B mesons
 - wide $p_{\rm T}$ range, and especially low $p_{\rm T}$

Significant differences between c and b predicted

Three benchmark analyses presented:

- charm meson production $D^0 \rightarrow K^-\pi^+$
- beauty meson production $B \rightarrow D^0 (\rightarrow K^-\pi^+) + X$
- charm baryon production $\Lambda_c \rightarrow pK^-\pi^+$

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39mm ⇒22mm
- Reduce material budget: X/X₀ /layer: ~1.14% ⇒ ~ 0.3%
- Reduce pixel size (currently 50μm x 425μm)
 - monolithic pixels \Rightarrow O(20µm x 20µm),

hybrid pixels \Rightarrow state-of-the-art O(50µm x 50µm)

- 2. High standalone tracking efficiency and p_T resolution
- Increase granularity: 6 layers ➡ 7 layers , reduce pixel size
- Increase radial extension: 39-430 mm ⇒ 22- 430(500) mm
- 3. Fast readout
- Pb-Pb interactions at > 50 kHz, pp interactions at ~ several MHz
- 4. Fast insertion/removal for yearly maintenance
- possibility to replace non functioning detector modules during yearly shutdown

- Option A: 7 layers of pixel detectors:
 - better standalone tracking efficiency and p_T resolution
 - worse PID
- Option B: 3 inner layers of pixel detectors and 4 outer layers of strip detectors:
 - worse standalone tracking efficiency and momentum resolution

→ pK⁻π⁺

→ DK⁻π⁺

With new ITS: Precision improved by more than two orders of magnitude! (S/B improvement ~ one order, statistics bring another order) For Λ_c -baryon measurement -- high statistics necessary

I. Belikov

"Physics results"

11

- beauty via non-prompt D⁰ -> $K\pi$ mass dependence of energy loss
 - needs precision of the new ITS
 - Λ_{c} charm in-medium hadronization, baryon–meson ratio
 - needs both: new ITS and luminosity ~ 10 nb⁻¹

	Hybrid pixels	Monolithic pixels	
Granularity	Limited, because of the bump bonding R&D ongoing: state of art 50x50 µm ² .	Small pixel size (~ 20 x 20 µm²)	
Material budget	Two Si-chips limit the minimal material budget. R&D ongoing: thinning of the sensor \rightarrow 50 µm and of the readout chip \rightarrow 100 µm	Thin sensor: 50 µm (0.05% X0)	
Radiation tolerance	Proven radiation hardness	R&D ongoing: new technology (TOWER/JAZZ CMOS 0.18 μm) Very promissing beam test results	
Cost	High, because of the bump bonding	Low	

SNR (MPV) and detection efficiency (stat. undercainty only):

Irradiation	SNR (MPV)	Detection efficiency [%]		
Dose	15°C	30°C	15°C	30°C	
0	30.9 ± 0.4	29.7 ± 0.4	99.91 \pm 0.06	99.7 \pm 0.1	
1 MRad & 1 $ imes$ 10 13 n $_{eq}$ /cm 2	22.6 ± 0.4	19.3 \pm 0.2	99.92 ± 0.08	99.87 ± 0.07	

Conceptual Design Report for the Upgrade of the ALICE Inner Tracking System | CERN-LHCC-2012-013 (LHCC-P-005)

CERN-LHCC-2012-013 (LHCC-P-005) ALICE-DOC-2012-002 6 September 2012

Upgrade of the Inner Tracking System

Conceptual Design Report

ALICE® A Large Ion Collider Experiment | September 2012

Backup slides

I. Belikov

Rencontres QGP-France, Etretat, 25-28 Sept.2012

16

Upgrade of the ALICE Inner Tracking System (ITS)

In the perspective of high luminosity PbPb (2018) and the frame of the global reforging of ALICE

Monolithic pixels: Evaluation of Tower/Jazz technogoly

MIMOSA 32 (IPHC Strasbourg)

- Digital and analog blocks (2T and 3T structures with various diodes)
- 100 circuits delivered Jan 2012 🗸
- Test with Fe⁵⁵ source 🗸
- Irradiation tests (X-ray, neutron) ✓

mm

4.1

- Beam-test June 6-11, 2012 🗸
- MONALICET1 (CERN/CCNU)
- Single transistors
- Breakdown structures
- Memories
- Digital structures
- Shift register

I. Belikov

- Delivery July 2012
- Irradiation test (X-ray)

rder/choice of nucle

- ALICE heavy-ion program approved for ~ 1 nb⁻¹:
 - 2013–14 Long Shutdown 1 (LS1)
 - completion of TRD and CALs
 - 2015 Pb–Pb at $\sqrt{s_{NN}} = 5.1$ TeV
 - 2016–17 (maybe combined in one year) Pb–Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$
 - 2018 Long Shutdown 2 (LS2)
 - 2019 probably Ar–Ar high-luminosity run
 - 2020 p–Pb comparison run at full energy
 - 2021 Pb–Pb run to complete initial ALICE program
 - 2022 Long Shutdown 3 (LS3)
- This will improve statistical significance of our main results by a factor about 3
 - physics reach extended by the new energy and completion of TRD and CALs

Significance: multiply by ~10⁵

with new ITS: signal-to-background improved by one order of magnitude significance improved by factor 2–4

I. Belikov

 $B \rightarrow D^0 (\rightarrow K^-\pi^+) + X$

Impact parameter distribution for D and B

Relative statistical error on B fraction (new ITS)

Significantly improved resolution for prompt D meson with new ITS For B-meson measurement high statistics necessary Study of systemic uncertainties presented in Lol

I. Belikov

Motivation for elliptic flow

- New: ALICE preliminary results with full 2011 sample (10⁷ events in 30-50%)
- Indication of non-zero v₂
- But uncertainties are substantial
- Factor 3 larger statistics 2015-16 data?

 \rightarrow Need precise measurement of v₂ of D and B mesons to answer these questions:

- is v_2 of charm the same as of pions?

- is v_2 of beauty smaller than of charm?

- comparison with models \rightarrow HQ transport coefficient of QGP

One of the most fundamental (and difficult) measurements, potentially giving access to:

- chiral-symmetry breaking mechanism by modification of ρ -meson spectral function
- direct photon thermal emission extrapolating to zero dilepton mass
- partonic equation of state studying space-time evolution with invariant-mass and $p_{\rm T}$ distributions of dileptons

Measurements to be done:

- mapping of dilepton yields in invariant mass and $p_{\rm T}$
- elliptic flow of dileptons
- (after experimentally driven subtraction of all backgrounds...)

Need for special run at lower magnetic field (B = 0.2T) to enhance acceptance at low p_{T} , thus integrated luminosity of 3 nb⁻¹ assumed

ALICE dielectrons

inclusive dielectron invariant mass

... excess after subtraction

current ITS and event rate, no cut on impact parameter...

ALICE dielectrons

inclusive dielectron invariant mass

... excess after subtraction

new ITS and high-rate upgrade, with "tight" impact parameter cut...

new ITS and high-rate: significant improvement (one order of magnitude)...

Simulation validation

Ш

resolution [

^ਦ 250

응

300

200

150

100

50

8.2

0.4

0.6

0.8

Full Monte Carlo simulation

Data, pions Data, kaons

Data, protons

ALICE performan 10/12/2010

ITSUpgrade, pions

ITSUpgrade, kaons

= 7 TeV (2010 data

ITSUpgrade, protons

1.2

1.4

1.6 1.6 Pt [GeV/c]

Present Inner Tracking System (ITS)

	Layer	Technology	R (cm)	±z	Spatial	resolution (µm)	Material budget	
	, ,		, (cm)	rф	z	X/X ₀ (%)		
	1	Pixel	4.0	14.1	12	100	1.14	Provide Level 0
	2	Pixel	7.2	14.1	12	100	1.14	(latency < 800 ns)
	3	Drift	15.0	22.2	38	28	1.13	
	4	Drift	23.9	29.7	38	28	1.26	Provide dE/dx for
	5	Strip	38.5	43.2	20	830	0.83	identification
	6	Strip	43.6	48.9	20	830	0.83	
3		Charles Charles			Silicon Pi Silicon D Silicon S (double-s	ixel Detecto rift Detect trip Detect sided)	ors	R=43.6 cm

Simulation tools

- Fast Estimation Tool (FET): "Toy-Model" originally developed by the STAR HFT collaboration which allows to build a simple detector model.
- Fast MC Tool : Extension of the FET -> allows to • disentangle the performance of the layout from the efficiency of the specific track finding algorithm
- Full Monte Carlo : Transport code (geant3) designed • to be flexible : the detector segmentation, the number of layers, their radii and material budgets can be set as external parameters of the simulation.

Two basic ITS upgrade scenarios

Ĺ= 97.6 cm

Layer /	R [cm]	±z [cm]	Intrinsic r [μ	esolution m]	Material budget X/X ₀ [%]	
Туре			rφ	z		
Beam pipe	2.0	-	-	-	0.22	
1 / pixel	2.2	11.2	4	4	0.3	7 lavers
2 / pixel	2.8	12.1	4	4	0.3	4x4 μm ²
3 / pixel	3.6	13.4	4	4	0.3	
4 / pixel (strips)	20.0	39.0	4 (20)	4 (830)	0.3 (0.83)	
5 / pixel (strips)	22.0	41.8	4 (20)	4 (830)	0.3 (0.83)	4 layers
6 / pixel (strips)	41.0	71.2	4 (20)	4 (830)	0.3 (0.83)	layers 4x4
7 / pixel (strips)	43.0	74.3	4 (20)	4 (830)	0.3 (0.83)	20x830 μm²

The two Silicon detector technologies

*µ*chip

Several technologies are being considered

Hybrid pixel detectors

Edgeless sensors (100μm) + front-end chip (50μm) in 130 nm CMOS

Tower/Jazz

IBM

Monolithic pixel detectors

- MIMOSA like in 180 nm CMOS
- INMAPS in 180 nm CMOS
- LePix in 90nm CMOS

MISTRAL prototype circuit (IPHC)

LePIX prototype circuit (CERN)

HYBRID (CERN)

INMAPS (RAL)

TPAC prototype 50 μm pixel - over 150 CMOS transistors

Monolithic Pixel Detectors→ possible breakthrough development

TOWERjaz

Development for monolithic detectors using Tower/Jazz 0.18 µm CMOS technology:

- Improved TID resistance due to smaller technology node
- Available with high resistivity (~1k Ω •cm) epitaxial layer up to 18 μ m
- Special quadruple-well available to shield PMOS transistors (allows in-pixel truly CMOS circuitry)

(R. Turchetta – RAL)

- Study radiation hardness and SEU
- Study charge collection performance

- Design prototype chips in Tower/Jazz 0.18 μm
- Use existing structures (RAL)