Review of photon physics results at Quark Matter 2012

Gustavo Conesa Balbastre

Laboratoire de Physique Subatomique et de Cosmologie

Why photons?

- Direct thermal: Produced by the QGP
- Measure medium temperature

 $\Rightarrow R_{AA} > 1, V_2 > 0$

- Direct prompt: QCD LO/NLO processes, not modified by QGP, correlated with QCD jet Nucleus A
 - → Validate pQCD predictions

• Isolated
$$\gamma$$
 : $R_{AA} = 1$, $v_2 = 0$

→ jet : $R_{AA} < 1$, $v_2 > 0$, D(z) modified, jet quenching

 Decay (π⁰, η,□): belong to a QCD jet

What have we learned?

Thermal photons

Direct photon production : PHENIX

- Direct photon excess above p+p spectrum
- Exponential (consistent with thermal)
- T= 221±19^{stat}±19^{sys} MeV
- No excess in d-Au collisions (QM2011)

What about LHC?

Direct photon production: ALICE

Direct photon production : PHENIX

Isolated photon production: ATLAS

photon p₇ [GeV]

photon \mathbf{p}_{T} [GeV]

- Good agreement with NLO predictions
- No suppression
- Similar for Z

Laboratoire de Physique

Isolated photon production: CMS

 Bosons: isolated γ, W and Z, are not suppressed unlike other particle species and jets

CMS

- Photons serve as an unmodified energy tag for the jet partner
- Ratio of the p_T of jets to photons : x_{Jγ}=p_T^{jet}/p_T^γ is a direct measure of the jet energy

Gradual centrality-dependence of the x_{Jγ} distribution

• Distributions: $\mathbf{x}_{J\gamma} = \mathbf{p}_T$ (jet) / \mathbf{p}_T (γ) normalized to N γ (black points) compared to Pythia (yellow area)

Clear shift in data distribution in central events compared to Pythia Where is the missing energy?13/28

Direct photon – jet correlation : ATLAS-CMS $x_{J_{v}}=p_{T}^{jet}/p_{T}^{\gamma}$

- Different experimental cuts! (jet pT, cone size)
- Centrality dependent downward shift of <x_{jy} > (jets more quenched)

 Jets lose ~14% of their initial energy in central collisions

Direct photon – jet correlation : ATLAS-CMS

• $R_{J\gamma}$ = fraction of photons with jet partner,

- CMS p_T jet >30 GeV/c, p_T photon 60 GeV/c
- Centrality dependent downward shift of R_{jy} (lower jet yield)

~20%-30% of photons lose their jet partner

Direct photon – h correlation : PHENIX

- Another approach correlate the photon with the hadrons in the opposite side measuring $z_T = p_T$ (hadron) $/p_T(\gamma)$
- Advantage : Loose or no restriction on the hadrons

Direct photon – h correlation : PHENIX

- Significant large suppression at small ξ
- Sizable enhancement at large ξ

aboratoire de Physique

Energy loss depletion + wide angle recovery

These features present in theory calculations : Loose or no restriction on the hadrons location (no jet cone) 17/28

Direct photon – h correlation : PHENIX

• Integrating in ϕ ranges we see an evolution with the angle

- Qualitatively consistent: Rise from low xi to high xi present in all integration ranges
- Less in the "head" region!

Broadening of the away side fragmentation
And at LHC?

Direct photon – h correlation : ALICE

- First step of the analysis : measuring the pp reference
- Slope in agreement with predictions
 - We expect a change in the slope and trend in PbPb!
- See Nicolas presentation for details

20/28

Laboratoire de Physique Subatomique et de Cosmolo

π^0 in pp : ALICE

combined Spec.	π ⁰ , √s = 7 TeV (*) syst, stat ●	π ⁰ , √s = 2.76 TeV syst, stat ★	π ⁰ , √s = 0.9 TeV (*) syst, stat ■
NLO μ= 0.5 p_			
NLO μ= p _			
NLO μ= 2 p_			
NLO μ= 2 p _T (BKK)			(*) arXiv:1205.5724

■ pQCD NLO calculations reproduce data at □s=0.9 TeV, but overestimate □P spectrum at □s=2.76 and 7 TeV.

7 and 0.9 TeV data published online last week in PRL B <u>http://dx.doi.org/10.1016/j.physletb.2012.09.015</u>

η in pp : ALICE

combined Spec.	η, √s = 7 TeV (*) syst, stat ●	η, √s = 2.76 TeV syst, stat ★	η, √s = 0.9 TeV syst, stat ■
NLO μ= 0.5 p_			
NLO $\mu = p_{\pm}$			
NLO μ = 2 p _T			
			(*) arXiv:1205.5724

ALI-PREL-16602

.

ALI-PREL-16609

• pQCD NLO calculations overestimate η spectrum at \Box s=2.76 and 7 TeV.

7 and 0.9 TeV data published online last week in PRL B http://dx.doi.org/10.1016/j.physletb.2012.09.015

22/28

π^0 in PbPb : ALICE

Measurement up to 10 GeV/c, to be extended

π^0 in PbPb : ALICE

- Suppression follows the energy dependence seen at RHIC energies
- Suppression agrees with charged pion R_{AA} within errors

[S.Bathe et al., PHENIX collaboration. J. Phys. G: Nucl. Part. Phys. 38 (2011) 124001]

Similar results in ALICE - QM2011

Laboratoire de Physique Subatomique et de Cosm

π^0 in d-Au : PHENIX

Shadowing calculation uses EPS09 PDF modification* + Glauber MC + PYTHIA (x, Q^2) sampling for π^0 .

Shadowing effects match in central, but not in peripheral

*nPDF modification assumed to scale linearly with longitudinal nuclear thickness.

π^0 in d-Au : PHENIX

 π^0 and jets of same p_{T} sample slightly different parton scales, but let's overlay them anyways...

Good agreement within uncertainties, and given the difference in observables.

27/28

What do we know so far ...

- The matter at LHC attains a Temperature of the order of 300 MeV and 220 MeV at RHIC
 - What is the v₂? CNM at LHC?
- Direct prompt photons (and bosons) production is not affected by the QGP nor CNM (at RHIC)
 - What is the v₂? CNM at LHC?
- The jets correlated with direct photons
 - are modified and suppressed in the nuclear hot medium
 - The hard core remains, soft particles emitted at large angles
- Neutral mesons (π⁰, η)
 - Not fully reproducible by pQCD in pp collisions at 2.76 and 7 TeV
 - Are suppressed in PbPb-AuAu collisions, not in dAu central, enhancement in peripheral
 - Interesting to see in coming pPb

Back-up

Photon sources

Pre-equilibrium: Prompt photons

Equilibrium: Thermal-Bremsstrahlungjet conversion photons

Freeze-out Decay photons

Laboratoire de Physique

- Photons are produced during all stages of the collision.
- Challenge:
 - Disentangle the different sources.
 - Neutral mesons decay.
 - But decay photons provide a first choice probe of medium effects
 - Identify real photons (EM calorimetry, trigger) and e+e- from virtual and converted photons (tracking and PID, trigger)

Neutral mesons in ALICE : η/π^0 in pp

In agreement with ratio at smaller energies

 ω in pp : ALICE

Ratio at smaller energies in agreement

G. Conesa Balbastre @ QM2011

Neutral mesons in ALICE : π^0 in PbPb

• WHDG model reproduces both strength and centrality dependence Chen (HT) fails to reproduce centrality dependence • Vitev's model agrees with data in central collisions.

• W. A. Horowitz. Int.J.Mod.Phys. E16 (2007) 2193–2199, arXiv:nucl-th/0702084 [NUCL-TH].

• X.-F. Chen, T. Hirano, E. Wang, X.-N. Wang, and H. Zhang. Phys.Rev. C84 (2011) 034902, ArXiv:1102.5614 [nucl-th].

• R. Sharma, I. Vitev, and B.-W. Zhang. Phys.Rev. C80 (2009) 054902, arXiv:0904.0032[hep-ph].

- Charged hadrons v2 higher than pi0 v2
- Consistent with higher v2 for baryons

 π^0 V₂ at PHENIX

Low p_T comparison influenced by baryon-meson admixture

 v₂ at large momentum is also very similar despite the change in beam energy

Fractional energy loss

arXiv:1208.2254

Spectral Shift Model

...a simple phenomenological model accounting for the spectral shape

Energy loss parameter increases at the LHC even when R_{AA} is nearly equivalent between the two

$\delta p_T / p_T$ vs energy

RHIC has run at multiple lower beam energies, and a similar examination gives...

from lower RHIC beam energies to higher

QM2008

RHIC : PHENIX V_2

