

GAUDI
LHCb Data Processing Applications
Framework
Architecture Design Document

Reference: LHCb 98-064 COMP
Version: 1.0
Created: November 9, 1998
Last modified: November 24, 1998
Prepared by: LHCb software architecture group

Editor: P. Mato
LHCb

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the Information
and Programming Techniques Group at CERN. Only widely available fonts have been used, with
the principal ones being:

Running text: Times New Roman 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: Arial 28 pt
Section headings Arial 20 pt
Subsection and subsubsection headings: Arial Bold 12 and 10 pt
Captions: Arial 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the rights of the
trademark holder.

Contents

1 Introduction . 5
1.1 Purpose of the document 5
1.2 Scope of the system . 5
1.3 Definitions, acronyms and abbreviations 6

1.3.1 Definitions . 6
1.3.2 Acronyms . 6

1.4 References . 6
1.5 Overview of the document 6

2 System Overview . 7
2.1 Computing tasks . 8
2.2 System Context . 8
2.3 Project Strategy . 10

3 System Design . 13
3.1 Major design criteria . 14
3.2 Object diagram . . 16
3.3 Classification of classes and component model 18
3.4 Transient Data Model 20
3.5 Algorithms and the Transient Data Store 22
3.6 Transient and Persistent data representations 22
3.7 Links between event and detector data 24
3.8 Data visualization . . 24
3.9 Components . . 26

3.10 Component Interactions 28
3.10.1 Application initialization and basic event loop 28
3.10.2 Retrieving and storing event objects 30
3.10.3 Detector data synchronization 30

3.11 Physical Design . 32
4 Application Manager . 35

4.1 Purpose and Functionality 36
4.2 Interfaces. . 36
4.3 Dependencies . 38

5 Algorithms . 39
5.1 Purpose and Functionality 40
5.2 Interfaces. . 40
5.3 Dependencies . 40

6 Data Converter . 43
6.1 Purpose and Functionality 44
6.2 Interfaces. . 46
6.3 Dependencies . 46

7 Job Options Service . 47
7.1 Purpose and Functionality 48
7.2 Interfaces. . 48
7.3 Dependencies . 50

8 Event Selector . 51
8.1 Purpose and Functionality 52
GAUDI 3

Contents

8.2 Interfaces . 52
9 Transient Data Store . 55

9.1 Purpose and Functionality 56
9.2 Interfaces . 56
9.3 Dependencies . 56

10 Event Data Service . 59
10.1 Purpose and Functionality 60
10.2 Interfaces . 60
10.3 Dependencies . 62

11 Event Persistency Service 63
11.1 Purpose and Functionality 64
11.2 Interfaces . 64
11.3 Dependencies . 66

12 Detector Data Service . 67
12.1 Purpose and Functionality 68
12.2 Interfaces . 70
12.3 Dependencies . 70

13 Detector Persistency Service 71
13.1 Purpose and Functionality 72
13.2 Interfaces . 72
13.3 Dependencies . 74

14 Histogram Data Service . 75
14.1 Purpose and Functionality 76
14.2 Interfaces . 76
14.3 Dependencies . 76

15 Histogram Persistency Service 77
15.1 Purpose and Functionality 78
15.2 Interfaces . 78
15.3 Dependencies . 80

16 User Interface. 81
16.1 Purpose and Functionality 82
16.2 Interfaces . 82

17 Message Service . 85
17.1 Purpose and Functionality 86
17.2 Interfaces . 86
17.3 Dependencies . 86

18 Transient Event Data Model 89
18.1 Purpose and Functionality 90
18.2 Access and Interfaces 90
18.3 Dependencies . 90
18.4 EventData . 91
18.5 MonteCarloEvent . 92
18.6 RawEvent . 93
4 LHC Experiment Controls

r the
rk has
 to
1

Introduction

1.1 Purpose of the document

This document is the result of the architecture design phase for the LHCb event data
processing applications project. The architecture of the LHCb software system includes its
logical and physical structure which has been forged by all the strategic and tactical
decisions applied during development. The strategic decisions should be made explicitly
with the considerations for the trade-off of each alternative.

The other purpose of this document is that it serves as the main material for the scheduled
architecture review that will take place in the next weeks. The architecture review will allow
us to identify what are the weaknesses or strengths of the proposed architecture as well as
we hope to obtain a list of suggested changes to improve it. All that well before the system
is being realized in code. It is in our interest to identify the possible problems at the
architecture design phase of the software project before much of the software is
implemented. Strategic decisions must be cross checked carefully with the experts (the
reviewers) because they are essential for the system which is being developed, specially if
the system needs to be operational for very long time scales.

1.2 Scope of the system

The goal of the project is to build a framework which can be applied to a wide range of
physics data processing applications for the LHCb experiment. We would like to cover all
stages of the physics data processing: physics and detector simulation, high level software
triggers, reconstruction program, physics analysis programs, visualization, etc. An also to
cover a wide range of different environments such as interactive non interactive
applications, off-line and on-line programs, etc.

Using a framework, the development of the LHCb software system is made easy because
major functional elements can be reused. The framework is the implementation of the
architecture, thus the importance of developing an architecture which can “work” unde
various environments and data processing stages. So, it is important that the framewo
sufficient knobs, slots and tabs that can be adapted to current problem and integrated
other frameworks.
GAUDI 5

Introduction

96

of
 of its
ludes
ams.
cludes
and the
1.3 Definitions, acronyms and abbreviations

1.3.1 Definitions

Architecture The software architecture of a program or computing system is the structure or
structures of the system, which comprises software components, the externally
visible properties of those components, and the relationships among them.

Framework A framework represents a collection of classes that provide a set of services for a
particular domain; a framework exports a number of individual classes and
mechanisms that clients can use or adapt. A framework realizes an architecture.

Component A software component is a re-usable piece of software that has a well specified
public interface and it implements a a limited functionality. Sofware components
achieve reuse by following standard conventions.

1.3.2 Acronyms

CERN European Organization for Nuclear Research

URD User Requirements Document

ADD Architecture Design Docuument

UML Unified Modeling Language

ODBMS Object-oriented Data Base Management System

1.4 References

[1] P. Binko ed., “LHCb Computing Tasks”, LHCb/98-042 COMP

[2] P. Maley ed., “LHCb Application Framework: URD document”, LHCb/98-XXX COMP

[3] L. Bass et al., “Software Architecture in Practice”, Addison-Wesley, 1998

[4] G, Booch, “Object Solutions: Managing the object-oriented projet”, Addison-Wesley, 19

[5] L. Lakos, “Large-scale C++ software design”, Addison-Wesley, 1998

1.5 Overview of the document

The first chapter of the document is the introduction containing the purpose, scope and series
definition of terms. Chapter 2 includes the overview of the system together with the description
basic functionality.The overall system design is described in chapter 3. This system design inc
the first level decomposition of the system into hardware and functional components with diagr
Starting from chapter 4, each chapter is devoted to the description of a single component. It in
what the component is, what is the purpose, what it does, how it is decomposed, the interfaces
dependencies with other components.
6 LHC Experiment Controls

2

System Overview

In this chapter we introduce the LHCb event data processing problem and the scope of the
solution we are proposing. For more details of what the problem is in terms of variety and
scale please refer to the Technical Proposal supporting document [1] and the collection of
requirements and scenarios collected in the document [2].

2.1 Computing tasks .8

2.2 System Context . .8

2.3 Project Strategy . 10
GAUDI 7

System Overview

2.1 Computing tasks

The software system we are designing covers all software tasks needed for processing the event data.
It spans the domains of on-line and off-line computing. It includes the algorithms to filter interesting
events from background (so called high level triggers), as well as the full reconstruction and analysis
tasks. The overview of these tasks are shown in Illustration 2.1 using a dataflow diagram.

As we can see, the event data processing system will consists of a series of processes or tasks that will
transform the data collected from the detector into physics results. The data processing is done in
various stages following the traditional steps: data collection and filtering, physics and detector
simulation, reconstruction and finally physics analysis. The development of all these data processing
tasks will involve in one hand computing specialists to build the framework and the basic components
and on the other hand the people specialized on each sub-detector that will build the specific code
which will be needed for the reconstruction, simulation of each of the sub-detectors and its final
combination. In addition, there will be the people developing the data analysis programs to produce
the final physics results.

2.2 System Context

The software framework will play a central role. Practically all members of the colaboration will
interact with it in one way or another. It will provide the skeleton for the reconstruction and analysis
of data from the experiment. It will be used for producing simulated data. Monitoring of the
experiment during data taking may also make use of the facilities supplied by the framework.

Illustration 2.1 shows the relationship between the framework, the experiment and people.

We have categorized the people who work with the framework into four groups. This categorization
is not intended to be exclusive, it is a categorization of interaction rather than of people and many
people will belong to several groups

1. Physicists. These people are principally interested in getting results. Any software they produce is
for private use only. They are interested in analysing reconstructed data. They produce
histograms, statistical distributions which they fit to extract parameters, etc.. If they input
anything into the system it is in terms of ideas and physics processes (e.g. for event generators).

2. Physicist developers. These people will contribute to a big fraction of the system code in terms of
number of lines. Their principal occupation is to implement components within the provided
framework. These components are such things as: Detector simulation and response code;
reconstruction code; etc.. We differentiate between physicists and physicist developers, because
individuals fullfilling the later role are supplying something that will be used by many other
people. Thus the approach to producing software must be that much more disciplined than for
producing private code. In addition this activity will require more knowledge of the framework
than that required by the average physicist user.

3. Configuration managers. These people are responsible for the management of data production
(Monte Carlo, Reconstruction,...), versioning of detector geometry, calibration, alignment, etc.
etc.. They do not necessarily need to write much code, but they will probably need to be
conversant with database management tools.

4. Framework developers and maintainers. These people are responsible for the design,
implementation and maintenance of the framework itself.
8 GAUDI

System Context
(a)

Build Events

Detector Front End
Detector Description

Selection Criteria Physics Results

Data Store

Events

Alignment+Calibration
 Constants

L2/L3 Triggers

Align+Calibrate Reconstruct

Design selections Make selections Analyse

Detector
simulation

Physics
generators

Analysis
objects

Analysis objects
MC Truth

(Reco. objects)
(Raw data)

Reco.
objects

Reco. objects
MC Truth

(Raw data)

MC Truth

 Private
 Analysis
objects

MC
Truth

Simulated
Raw data

Trigger data
Raw data

Raw data
[real or simulated]

(Reco. objects)

Reco.
objects

Reco.
objects

FrameworkExperiment

Physicist
Physicist
developer

Configuration
manager

Framework
developer

(b)

Illustration 2.1 (a) Dataflow diagram showing all the main tasks and data flows for the LHCb computing

(b) Context diagram for the framework.
GAUDI 9

System Overview

e able

our own
t of the
to try
xample
n other
r trying
 usage

s while

bably
at the
users.
 their
ue to
them,
ration
evelop

h step
 an
t is, to
faces
ese

an be
 their

s can be
opriate

to go
ck from
r what

which
2.3 Project Strategy

The ultimate aim of the project is to provide a software framework useable by the entire LHCb
collaboration for the simulation, reconstruction and analysis of p-p interactions at the LHC.

The first step in achieving this goal is of course to understand the requirements of the future system
users. This is not as simple as it might seem as it is very difficult to start from what is essentially a
blank piece of paper and write a list of formal requirements.

The design of the framework is driven by the requirements of the physicists who will develop
reconstruction and simulation code and who will use the framework to do analysis of the data. These
people know in broad terms what they want to do, but the details are as yet unknown. The
development of this type of software is a very exploratory process: ideas which work are kept, those
which don’t are thrown away. Thus we know that the system must be flexible, but in order to b
to implement something we must establish the boundaries of this flexibility.

Our approach, then, to establishing the system requirements has been a combination of using
past experience (as most of us have a background in HEP) along with interviewing a subse
future users (physicist developers primarily). The aim of these (very informal) interviews was
to step through the likely processes of simulation, reconstruction and analysis and to extract e
usages of the system. Additionally, the experiences that people have had with software o
experiments is also a valuable source of information. For example, a physicist may remembe
to do an analysis which required a lot of hacking, or contorted coding because that particular
had not been forseen by the software designers. This kind of example is very important to u
considering the current project.

Once this first step of identifying the main system requirements is in a healthy condition (it pro
never is finished) we can start on the design and implementation. However it is crucial th
development of the software does not proceed in isolation but intimately involves the future
Otherwise there is a very large risk of producing a framework which just does not match with
wishes. Additionally, time does not stop while the software is developed: physicists will contin
work, to develop algorithms and make studies. If they do not have a framework provided for
they will go and find one themselves. This inevitably leads to a fragmentation of the collabo
with regards computing and a needless duplication of effort as, for example, many people d
their own visualisation software.

In order to avoid this we will approach the final software framework via incremental steps. Eac
adding to the functionality of the framework. The only way to do this without producing
amorphous blob of unmaintainable software is to use an architecture driven approach. Tha
identify a series of large scale components with definite functionality and well defined inter
which interact with each other to supply the whole functionality of the framework. All of th
components are essentially decoupled from each other.

Once the architecture is relatively stable, implementation can begin. Components c
implemented one at a time and in a minimal manner, i.e. supplying sufficient functionality to do
job, but without the many refinements that can be added at a later date. In addition component
replaced easily by anything which implements the appropriate interface and provides the appr
functionality. Thus we can make use of “third-party” software.

Thus our strategy for arriving at the final project goal with the rest of the collaboration in-tow is
through many short cycles of incremental implementation and release. At each stage feedba
the users will make sure that we do not stray from what they want and also set the priorities fo
the following release should contain.

Each increment would first be tested by selected users.

The first release will consist of sufficient software to allow users to read simulated events
already exist in the form of ZEBRA files.
10 GAUDI

Project Strategy
/+&E�6RIWZDUH�5RDG�0DS

���� ������������

0DMRU�SURMHFW
UHYLHZV�
3RVVLELOLW\�RI
FKDQJLQJ�WKH
GLUHFWLRQ

,QFUHPHQWDO
UHOHDVHV

)LQDO�V\VWHP
GAUDI 11

System Overview

12 GAUDI

3

System Design

The architecture of the system is described in terms of the components we have identified
and their interactions. A software component is a part of the system which performs a single
function and has a well defined interface. Components interact with other components
through their interfaces.

The notation we are using in this document to specify the architecture is the Unified
Modeling Language (UML). This notation is not completely adequate for describing
architectures in general, but in our case it seems to be sufficient and it has the advantage that
is widely known, thus we do not need to introduce other notations. We are going to use
mainly object diagrams to describe a snapshot of the components and their relationships at a
given moment in time, class diagrams to show the software structure and sequence
diagrams to describe some of the use cases or scenarios.

3.1 Major design criteria 14

3.2 Object diagram . 16

3.3 Classification of classes and component model 18

3.4 Transient Data Model 20

3.5 Algorithms and the Transient Data Store 22

3.6 Transient and Persistent data representations 22

3.7 Links between event and detector data 24

3.8 Data visualization . 24

3.9 Components . 26

3.10 Component Interactions. 28

3.11 Physical Design . 32
GAUDI 13

System Design

ch as

ster

 data,
nd
,

for
bra) to

n to
e

 that

m to
eused
r,

rt, the

cing”
 work,
that the
ma.
3.1 Major design criteria

Before we start with the description of the architecture we have crafted we need to explicitly
document what have been our design criteria and what are our strategic decisions.

Clear separation between “data” and “algorithms”

Despite our intention to produce an object oriented design, we have decided to separate data from
algorithms. For example, we are thinking to have “hits” and “tracks” as basically data objects and to
have the algorithms that manipulate these data objects encapsulated in different objects su
“track_fitter” or “cluster_finder”. The methods in the data objects will be limited to manipulations of
internal data members. An algorithm will, in general, process data objects of some type and produce
new data objects of a different type. For example, the cluster finder algorithm, produces clu
objects from raw data objects.

Three basic categories of data: event, detector and statistical data

We envisage three major categories of data objects. There will be the event data which is the data
obtained from particle collisions and its subsequent refinements (raw data, reconstructed
analysis data, etc.). Then, there will be detector data which is all the data needed to describe a
qualify the detecting apparatus in order to interpret the event data (structure, geometry, calibration
alignment, environmental parameters, etc.). And finally, we will have statistical data which will be
the result of some processing applied to a set of events (histograms, n-tuples, etc.).

Clear separation between “persistent data” and “transient data”

A main feature of our design is that we separate the persistent data from the transient data for all types
of data e.g. event, detector description, histograms, etc. We think that physics algorithms should not
use directly the data objects in the persistency store but instead use pure transient objects. Moreover
neither type of object should know about the other. There are several reasons for that choice:

• The majority of the physics related code will be independent of the technology we use
object persistency. In fact, we have foreseen to change from the current technology (Ze
an ODBMS technology preserving as much as possible the investment in terms of new
developed C++ code.

• The optimization criteria for persistent and transient storage are very different. In the
persistent world you want to optimize I/O performance, data size, avoid data duplicatio
avoid inconsistencies, etc. On the other hand, in the transient world you want to optimiz
execution performance, ease of use, etc. Additionally you can afford data duplication if
helps in the performance and ease of use.

• To plug existing external components into our architecture we will have to interface the
our data. If we interface them to our transient data model, then the investment can be r
in many different types of applications requiring or not requiring persistency. In particula
the transient data can be used as a bridge between two independent components.

Data centered architectural style

The architecture we are envisaging should allow the development of physics algorithms in a fairly
independent way. Since many developers will be collaborating in the experiment software effo
coupling between independent algorithms should be minimized. We have envisaged using a transient
data storage as a means of communication between algorithms. Some algorithms will be “produ
new data objects in the data store whereas others will be “consuming” them. In order for this to
the newly produced data objects need to be “registered” somehow into the data store such
other algorithms may have the possibility of identifying them by some “logical” addressing sche
14 GAUDI

Major design criteria

ed. We
Encapsulated “User code” localized in few specific places: “Algorithms”
and “Converters”

We need to take into account the need to customize the framework when it is used by different event
data processing applications in various environments. Most of the time this customization of the
framework will be in terms of new specific code and new data structures. We need therefore to create
a number of “place holders” where the physics and sub-detector specific code will be later add
are considering two main places: Algorithms and Converters.

All components with well defined “interfaces” and as “generic” as
possible

Each component of the architecture will implement a number of interfaces (pure abstract classes in
C++) used for interacting with the other components. Each interface consists of a set of functions
which are specialized for some type of interaction. The intention is to define these interfaces in a way
as generic as possible. That is, they should be independent of the actual implementation of the
components and also of the concrete data types that will be added by the users when customizing the
framework.

Re-use standard components wherever possible

Our intention is to have one single team with an overview of the complete LHCb software system
covering the traditional domains of off-line and on-line computing. We hope in this way to avoid
unnecessary duplication by identifying components in the different parts of the system which are the
same or very similar. We intend to re-use standard and existing components wherever possible.

Integration technology standards

We are not currently in a position to select a standard integration technology that provides the glue
between the different components of the architecture. However, we are aware of the importance of
selecting a technology and standardizing on it to guarantee a smooth integration and facilitate re-use
of commercial components. For this reason, we have tried to follow some of the ideas behind the
more popular integration technologies (CORBA, DCOM, JavaBeans) such that their later adoption
will not be traumatic.
GAUDI 15

System Design

e nature
ocess
tor
 in the
hich

lifetime
ings in

irectly
the
 not on

vices for

fferent
 from

e other

ill be

e
n

e to be
3.2 Object diagram

We introduce our description of the architecture by an object diagram showing the main components
of system (Illustration 3.1). We know that object diagrams are not the best way to show the structure
of the software but they are very illustrative for explaining how the system is decomposed. They
represent a hypothetical snapshot of the state of the system, showing the objects (in our case
component instances) and their relationships in terms of navigability and usage.

Algorithms and Application Manager

The essence of the event data processing applications are the physics algorithms. We encapsulate
these into a set of components that we called algorithms. These components implement a standard set
of generic interfaces. Algorithms can be called without knowing what they really do. In fact, a
complex algorithm can be implemented by using a set of simpler ones. At the top of the hierarchy of
algorithms sits the application manager. The application manager is the “chef d’orchestre”, it
decides what algorithms to create and when to call them.

Transient data stores

The data objects needed by the algorithms are organized in various transient data stores. We have
distributed the data over three stores as shown in the diagram. This distribution is based on th
of the data itself and its lifetime. The event data which is only valid during the time it takes to pr
one event is organized in the transient event store. The detector data which includes the detec
description, geometry, calibration, etc. and generally has a lifetime of many events is stored
transient detector store. Finally, the statistical data consisting of histograms and n-tuples w
generally have a lifetime of the complete job is stored in the transient histogram store. It is
understood that the three stores behave slightly differently, at least with respect to the data
(the event data store is cleared for each event), but their implementations have many th
common. They could be simply different instances of a common component.

Services

We have defined a number of components which should offer all the services directly or ind
needed by the algorithms. The idea here is that we would like to offer high level services to
physicist, so that they can concentrate on developing the physics content of the algorithms and
the technicalities needed for making everything work. We call this category of components services.

Some examples of services can be seen in the object diagram. For instance, there are ser
managing the different transient stores (event data service, detector data service,...). These services
should offer simplified data access to the algorithms. Another class of service are the di
persistency services. They provide the functionality needed to populate the transient data stores
persistent data and vice versa. These services require the help of specific converters which know how
to convert a specific data object from its persistent representation into its transient one or th
way around. Other services like the job options service, message service, algorithm factory, etc.
which are also shown in the diagram offer the service which its name indicates. They w
described in more detail later in the document.

Selectors

We have envisaged a number of components whose function will be to select. For instance, thevent
selector provides functionality to the application manager for selecting the events that the applicatio
will process. Other types of selectors will permit choosing what objects in the transient store ar
used by an algorithm, by a service, etc.
16 GAUDI

Object diagram
Illustration 3.1 Object diagram of the proposed architecture covering the kernel of any data processing application

TObj
TObj

Obj2

ApplicationMgr

PersistencySvc

Algorithm1
Algorithm1

Algorithm1

JobOptionsSvc

TObj

TObjContainer
TObjContainer

ObjContainer

Obj3

MessageSvc

TObj1
Obj1

DetDataSvc

TDetElem1
TDetElem1

TDetElem1

PObject
PObject
PDetElem

EventDataSvc

AlgFactory

AnotherPercySvc

Transient Event Store

PObj
PObj

PObj

PObj
PObj

PObj

DetPerstySvc

Alg
Properties

T Detector Store

T Histogram Store

HistogramSvc

Hist1
Hist1

Hist1

HistPerstySvc PHist
PHist

Converter
Converter

Converter Converter
Converter

Converter

EventSelector

Converter

TObj
Obj1

uses

creates

navigability
GAUDI 17

System Design

ta-

.

of
3.3 Classification of classes and component
model

Having introduced the decomposition of the system in the previous section, it is important now to
show the structure of the software in terms of what type of classes we are envisaging and their
hierarchies. Table 3.1 lists the main classes which will form the kernel of the architecture

.

The class hierarchies for the services and algorithms are shown in Illustration 3.2. These are not
meant to be complete and in their final form. We can see that all services will inherit from a common
service which implements a generic IService interface. This interface provides the common
functionality which is needed for each service. For example, it provides a reference counting
mechanism such that, any service that is no longer referenced will automatically be deleted from the
system. It also provides some identification of the service that will be needed to locate the service
during the initialization phase of the algorithms and other components.

In general, any component can implement more than one interface1. By doing that, we intend to
specialize each interface to a set of highly related functions which will be used typically by one type
of client. For example, the Algorithm component implements the IAlgorithm interface which is used
by the Application Manager or other Algorithms to process physics events. However it also
implements the IProperty interface which allows the application Manager or any interactive
component to change the behavior of the algorithm by changing some of its internal properties.
Clients of any component will have one or more references to the interfaces of the component but
never to the concrete component object. This is essential to ensure minimal coupling between
components. In addition, all the interfaces (pure abstract classes in C++) will inherit from a common
ancestor called IInterface. This will allow us to provide a mechanism for querying an interface of a
component for a reference to any other interface2.

Table 3.1 Classification of classes

Application Managers One per application. The “chef d’orchestre”.

Services Offering specific services with well-defined interfaces. Different concrete
implementations depending of specific functionality.

Algorithms Physics code. Nested algorithms. Simple and well-defined interface.

Converters In charge of converting specific event or detector data into other represen
tions.

Selectors Components to process a selection criteria for events, parts of events or
detector data

Event/Detector data The data types that the algorithms and converters use. Simple behavior

Utility classes All sorts of utility classes (math & others) to help with the implementation
the algorithms.

1 We follow the idea of Java, having single concrete class inheritance and implementation of multiple interfaces.
2 This mechanism is very similar to the one provided by the COM component model of Microsoft.
18 GAUDI

Classification of classes and component model
Service

JobOptionSvc

PersistencySvc

<<interface>>
IService

<<interface>>
IPersistencySvc

<<interface>>
IQueryOptions

<<interface>>
IDataManager

ObtyPersSvc

ZebraPersSvc

MessageSvc
<<interface>>

IMessage

<<interface>>
IInterface

<<interface>>
IDataProvider

EvtDataSvc

<<interface>>
IConversionSvc

(a)

Algorithm
<<interface>>

IProperty

TrackFinder

ClusterFinder

<<interface>>
IAlgorithm

GenericAlgorithm
<<interface>>
IGenAlgorithm

<<interface>>
IInterface

KalmanFilter

AnotherTrkFinder SelectionAlg
<<interface>>

ISelect

(b)

Illustration 3.2 Class hierarchies for some of the types of classes in the architecture: (a) services, (b) algorithms
GAUDI 19

System Design

that
) of all

or each
 long.
ansient
ts in the

These

 store
e of

e other
tion 3.3
ing hits
etween
3.4 Transient Data Model

The organization of the data in the transient data store will be a tree of data objects. This structure
resembles very closely a typical file system with files and directory files, where directory files may
contain also some data attributes. This is shown in Illustration 3.3 (a). Each data object can
potentially be a node of the tree and in addition also contain its own data members or properties. For
example, the Event object is the root node for all the event data and it has a set of properties, e.g.
event number, event time, event type, etc.

Any object in the data store needs to be uniquely identified. As in the case of the file system, the
identification (i.e. file name) is unique at the level of its container. The “full path” identification
uniquely identifies the object in the store is then made by concatenating the identifiers (names
the ancestor nodes with its own identifier.

We are aware that most of the event data objects will be very tiny data objects. For example, f
event we will have hundreds if not thousands of hit objects each of which will be a few bytes
So, we do not want these tiny objects to incur a big overhead when being managed in the tr
data store (the same arguments applies for the persistent store). Therefore, we foresee objec
store that will be normal identifiable objects and in addition be containers of small objects.
small objects themselves are not identifiable directly, but rather by containment.

To summarize, we envisage to have the following types of objects in the transient data store:

• Identifiable objects with data members (properties) which are also nodes from where other
objects hang.

• Normal identifiable objects

• Simple objects which are contained in one identifiable object.

Following the analogy with the file system it is equivalent to say that what we have in the data
are “directories with properties”, “files” and “records”. It is clear that a directory is a special typ
“file”.

Having this strong hierarchical structure between data objects (aggregation) does not preclud
kinds of relationships between the different objects. For example, as we can see in the Illustra
(b), we can have a hierarchy consisting of the event root, raw event, a number of sets contain
and a number of sets containing tracks. On top of this hierarchy we can have a relationship b
hits and tracks.
20 GAUDI

Transient Data Model
Identifiable

Directory

<<interface>>
IClassInfo

DataObject

ObjectSet

T2

T2

ObjectSet

T1

T1

Transient data
objects of type

T1 & T2

Data object
hierarchy

0..*

0..1

7UDQVLHQW�(YHQW�6WRUH

(YHQW�'DWD
6HUYLFH

3HUVLVWHQF\
6HUYLFH

$OJRULWKP

)LQG��´(FDO'LJLWVµ����

5HJLVWHU��´NH\µ����

'LUHFW�
UHIHUHQFH

)HWFK��
6WRUH��

FUHDWHV(a)

(b)

Illustration 3.3 Structure of the transient data store (a). Class diagram for the transient data model (b).
GAUDI 21

System Design

worlds

e other
the user
able of
ver it is
 with
to code
 have
put the
d a new
he
e able to

ng run

 the
tent or
cts are
 to the

xible
data
3.5 Algorithms and the Transient Data Store

The Algorithm component is the support structure for real computational code. Any code that a user
would like to be executed within the framework must conform to the Algorithm component
specification. This allows us to execute Algorithms without knowing what is its actual
implementation.

Complex Algorithms will be implemented by executing one or more basic ones. These Algorithms
that combined produce a high level algorithm need to exchange some data to perform its function.
The way this data communication is done is by using the transient data store. As shown in
Illustration 3.4, same algorithms are putting data objects in the store and others are retrieving them
creating the illusion of data being sent from one algorithm to the other.

3.6 Transient and Persistent data
representations

As mentioned in the architecture design criteria, we have chosen to have different object
representations for the transient and for the persistent store as opposed to having a single
representation of “persistent capable” objects. In that way we hope to be able optimize both
independently and decouple from the persistent storage technology.

The problem that now faces up is the need of converting objects from one representation to th
and vice versa. To solve this problem there are several options, one of them is to describe
data types within the framework (metadata) and have utilities that using this metadata are
doing the conversion. This approach is elegant and relatively easy for basic data types. Howe
extremely complicated when converting objects with arbitrary relationships and especially
relationships between the different data stores (event and detector). The other possibility is
the conversion specifically for each data object type. For the time being this is the option we
taken. Where this code will be siting is another question that we should address. We want to
conversion code neither in the transient class nor in the persistent class. So, we have create
type of component called Converter that will have a common interface and will be called by t
persistency service when an object needs to be converted. The tricky part is that we need to b
identify the type of the data object we want to convert in order to call the appropriate Converter. This
can be done by hard-wiring in the constructor of each data object a class identifier or by usi
time type information.

Each Converter will be specific to the data type it is in charge of converting. In that context,
Converter can perform more complicated operations than just to convert one-to-one the persis
the transient object. It can deal with the fact that maybe in persistent storage many tiny obje
combined into a single one (minimize overhead in space and I/O) and that when it is converted
transient representation it is in fact expanded to the individual objects. This kind of fle
functionality is possible if the code is written specifically but it would not be possible if the meta
approach were used.
22 GAUDI

Transient and Persistent data representations
$OJRULWKP
$

$OJRULWKP
%

$OJRULWKP
&

7UDQVLHQW�(YHQW
'DWD�6WRUH

'DWD�7�

'DWD�7���7�

'DWD�7�

'DWD�7���7�

'DWD�7�

'DWD�7�

'DWD�7�'DWD�7�

'DWD�7�

5HDO�GDWDIORZ $SSDUHQW�GDWDIORZ

(a)

7UDQVLHQW�(YHQW�
'HWHFWRU�6WRUH

3HUVLVWHQF\
6HUYLFH

&RQYHUWHU
&RQYHUWHU&RQYHUWHU
&RQYHUWHU

6HOHFWRU

7

7

7

'DWD
6HUYLFH

6WRUDJH
06

33

3 3

(b)

Illustration 3.4 (a) The interaction of Algorithms with the transient data store

(b) Persistent and transient representations
GAUDI 23

System Design

e

 type of
is not
the ones
re the

a set of
hat

uce the
es. The
 at the
3.7 Links between event and detector data

We have organized the data objects needed by the Algorithms in three transient stores as has already
been mentioned. The transient detector store contains the detector data which is needed to process the
event data. For example, in the case of the reconstruction of raw data, we will find in the transient
detector store the mapping between channel numbers and detector wire numbers or detector cell
numbers. This information is essential for converting hits in electronics channels into hits in space. It
is desirable that the transient representation of the set of raw digits belonging to a detector module has
a reference to the object containing this mapping. This would improve the modularity of the
Algorithms implementing the reconstruction. To do that, we need to have these references setup at the
time the event data is converted into the transient representation (perhaps this relationship is not even
exist explicitly in the persistent representation). The Converters are responsible of implementing
these relationships.

The problem now is that we need to make sure that the correct (i.e. valid for the current event)
detector data is referenced by the event data. This is especially important for slow control
environmental parameters, alignment, calibration constants, etc. Typically these detector data objects
should have a sort of validity range. A given set of alignment parameters is valid from a given
moment in time to another time in the future. Knowing that a time stamp is always associated to each
event (perhaps Monte Carlo events should have negative time stamps) the framework should make
sure that the detector objects in the transient detector store are valid for that event if this is not the
case the framework should make the necessary actions in order to update the detector object with the
valid information. This synchronization should happen automatically without the Algorithms having
to know about.

3.8 Data visualization

Another functionality required by the framework is the capability of visualizing data objects (event
data, detector data, statistical data). For example, the event visualization consists of representing
graphically in 3-D or in a projection a selected set of event data objects within a detector framework.
The visualization is an aid for debugging the reconstruction algorithms, for monitoring in the on-line
system, for helping in the physics analysis, etc.

The strategy we have taken is similar to the persistent/transient approach. We do not want to couple
the data object definitions to a particular graphics technology. In others words, we do not want to
declare and implement a method “draw()” in each data object. What we want is to have a service, th
graphical representation service (GraphRepSvc), that is responsible for converting the data objects
into their graphical representation. This graphical representation may depend in general on the
object we are converting. We tend to represent differently the various “physics objects” (i.e. it
the same to represent tracks than calorimeter hits or clusters). In general, the physicists are
that will decide what is the more convenient way to represent the physical objects. Therefo
pattern used is the same pattern as for the persistent/transient conversions. We will have
graphical representation Converters that will be called by the service when an object of the type t
the Converter can handle needs to be converted (i.e. displayed).

The output of the conversion can either be directly the calls to the graphics package to prod
visualization effect or an intermediate representation independent of the final graphics packag
second approach offers better portability to various platforms without re-writing the converters
expense of using the minimum common denominator of the various graphics packages.
24 GAUDI

Data visualization
(YHQW�'DWD�6WRUH

KLW

(&$/
KLWV

�'HWHFWRU�'DWD�6WRUH

(FDO
GHVFU� (FDO

GHVFU�

'LUHFW�OLQNV�
LQ�WKH�WUDQVLHQW�
ZRUOG��(VWDEOLVKHG
E\�WKH�FRQYHUWHUV

/LQNV�E\�´ORJLFDOµ�
LGHQWLILHUV�LQ�WKH
SHUVLVWHQW�ZRUOG�

7UDQVLHQW�(YHQW�
'HWHFWRU�6WRUH

5HS�
6HUYLFH

5HSUHVHQWDWLRQV
6WRUH

�JUDSKLFDO��
WH[WXDO�

&RQYHUWHU
&RQYHUWHU&RQYHUWHU
&RQYHUWHU

6HOHFWRU

Mark objects in Store 8VHU
,QWHUIDFH

(a)

(b)

Illustration 3.5 (a) Links between event data and detector data

(b) Data visualization ideas
GAUDI 25

System Design

ation
ust be

input
epend
hich

 into
parts of
ation of

 other
it the
rvice.

hysics
event

s and
m a
 to
.

nsient
rithms.
3.9 Components

The following list of components have been identified during the design of the architecture.
We define them very briefly with just enough detail to allow us to explain how they interact
in order to provide the main required functionality of the framework. More detailed
descriptions can be found in later chapters of the document.

Application Manager (ApplicationMgr)

The purpose of the application manager is to steer the data processing application. It is in
charge of bootstraping the application by creating all the required services and processing
components. It also implements the so called “event loop” by sequencing the initializ
phase and controlling the execution of the algorithms for each of the events that m
processed.

Algorithm interface (IAlgorithm)

An algorithm component has a single responsibility - to perform a computation on
data and produce output data. The actual data types and computation performed will d
on the concrete algorithm. Algorithms in general will have properties or parameters w
tune the computation.

Converter interface (IConverter)

A data Converter is responsible for translating data objects from one representation
another. Concrete examples are: converters creating transient objects representing
an event from the persistent representations, converters creating a textual represent
data objects for printing to the alphanumeric terminal, etc. Specific Converters will be to be
needed for each data type that needs to be converted.

Job options service (JobOptionsSvc)

The purpose of the job options service is to supply the options for the current job to
components of the architecture. It is assumed that facilities allowing the user to ed
options and to save or retrieve sets of them for future use are supplied outside this se

Event Selector (EventSelector)

The event selector will be used by the end user to select which events with given p
properties from all the available events will be processed by the application. The
selector is the component which knows what is the next event to be processed.

Data Object (DataObject)

Any transient data object (event, detector, statistical) used by the physics algorithm
capable of being stored in and/or retrieved from the transient store will inherit fro
common base DataObject class. This allows us on the one hand to write interfaces
services in a general way and on the other to force a structure in the transient storage

Transient Data Store

The transient data store is a passive component of the architecture where tra
representations of data objects are stored temporarily during the execution of the algo
It is the “logical” place where these data objects are stored.
26 GAUDI

Components
Event Data Service (EventDataSvc)

The event data service manages the transient event data store. This component provides the necessary
functionality to allow the algorithms and the application manager to locate data objects in the
transient store and to register new ones.

Event Persistency Service (EvtPersistencySvc)

The event persistency service delivers event data objects from a persistent store to the transient data
store and vice versa. The persistency service collaborates with the event data service to provide data
requested by the algorithms in case the data are not yet in the transient store. This service requires the
use of specific converters which will allow it to convert the data objects into, and from, their
persistent representation.

Detector Data Service (DetectorDataSvc)

The detector data service manages the transient detector data store. This component is very similar to
the event data service with regards to the retrieval and registration of data objects. However it is
additionally responsible for the synchronization of detector information to the current event.

Detector Persistency Service (DetPersistencySvc)

The detector persistency service delivers transient detector data objects from the persistent store. This
service will need to have knowledge of the model showing/representing the way different versions of
the detector description, calibration, alignment are stored.

Histogram Data Service (HistoDataSvc)

The main purpose of the histogram service is to store histograms or other statistical data in the
transient histogram store and to retrieve them when necessary. This component is very similar to the
event data service with regards the retrieval and registration of data objects.

Histogram Persistency Service (HistoPersistencySvc)

The histogram persistency service is able to load and save transient statistical data objects to and from
the persistent storage.

User interface (UI)

The user interface is the component through which the end user interacts with most of the
components of the system. In general, the components do have interfaces to allow clients to configure
and control them. The user interface component is the bridge between the internal interface (C++)
and an interface suitable for human interaction.

Message Service (MessageSvc)

The message service publishes messages originating from other software components. It is the only
component of the architecture that is allowed to transmit messages to the outside world. The service
filters messages according to their severity and dispatches them to different output destinations.

Data Item Selector (DataItemSelector)

A selection is a set of references to objects within a transient data store. This store could be either an
event data store, a detector data store or a histogram data store. A selector is a generic component
which creates a selection.
GAUDI 27

System Design

 by

 the
r.

 the

r

up by

ty
3.10 Component Interactions

The basic functionality of the framework can be described in terms of the interactions of the
components. This is described in this section. For this we have used some typical examples of the
basic functionality.

3.10.1Application initialization and basic event loop
• The main program for the application creates an instance of an ApplicationMgr1. The

ApplicationMgr is then in charge of creating the required services. It will first create the
JobOptionsSvc to know about its own environment and will start creating all services needed
default2. In particular, it will create the MessageSvc, EventDataSvc, DetectorDataSvc, etc.

• All the services created will need to be initialized before they can be used. They also have
opportunity to interrogate the JobOptionsSvc to find out about changes in their default behavio

• The ApplicationMgr will continue by creating the top level Algorithms with the help of the
AlgorithmFactory. The AlgorithmFactory creates the Algorithms with some default properties
from persistent storage.

• The Algorithms will then be initialized. Part of their initialization will consist of interrogating
again the JobOptionsSvc for properties being overwritten by the end-user. The Algorithms which
require other Algorithms will be created and initialized at this moment.

• The ApplicationMgr will then setup the collection of events that will constitute the basis of its
iteration (loop) and the various transient storages. The event collection will be obtained by
EventSelector upon the specification of the selection criteria. The transient event store will be
cleared and the first event root declared. The transient detector store will also be cleared and
populated with the correct version of the detector description, calibration, etc.

• All the Algorithms will be notified that a run is about to start in order to create the required
statistical objects. This is achieved by cascading the notifications within the nested Algorithms.

• The top level Algorithms will be called to process the first event by the ApplicationMgr. Each
Algorithm will then interact with the EventDataSvc to get a reference for the objects needed fo
its processing. Each Algorithm is in charge of invoking the execution of the event on the
Algorithms it is controlling.

• The EventDataSvc will delegate the fetching of the requested object to the EvtPersistencySvc if
the wanted piece of data is not yet in the transient data store.

• Once the event has been processed by the Algorithms, the ApplicationMgr instructs the
EvtPersistencySvc to save into persistent storage a list of data objects. This list has been set
the ApplicationMgr using a DataItemSelector.

• The ApplicationMgr retrieves then the next event to be processed from the EventSelector. It
clears the transient event store, loads the new event root and signals the DetectorDataSvc that a
new event has been loaded in case an update has to be done to the transient detector store.

• The execution of the job continues until the event collection is completed. Then, the
ApplicationMgr informs the Algorithms that the job is about to finish to give then an opportuni
to save the required statistical objects.

1 Various concrete implementations may exists of the ApplicationMgr specialized for different environments such as
batch oriented or interactive application, or the type of processing such as the official reconstruction program, user
analysis program, etc.

2 The service creation will require the help of a service factory in order to decouple the ApplicationMgr from the
concrete services.
28 GAUDI

Component Interactions
JobOptionsSvc

ApplicationMgr SvcFactory

new{}

object
OtherSavices

new{}

new{}

initialize

getOptions

AlgorithmFactory
new{}

object
Algorithm

new{} initialize

getOptions

initialize

create

createmain()

run

EventSelector

select

EventDataSvc

DetectorDataSvc

initialize

initialize

find

register

newevent

doevent

doevent

syncho

EvtPersistencySvc

load

save

DataItemSelector

save

Illustration 3.6 Collaboration diagram for the application initialization and basic event loop
GAUDI 29

System Design

t
n

s the
 It also
quest

e
e
 or

d. This
oment

ver
d

s way

3.10.2Retrieving and storing event objects
The framework has to guarantee that we are able to retrieve and store data objects from the persistent
storage:

• An Algorithm is asking the EventDataSvc for an object with a given identifier. If the object is no
in the transient event store, i.e. it has not been registered previously, it will trigger an action o
the EvtPersistencySvc.

• The EventDataSvc knows the “persistent address” of the required object because either it ha
root from where the object is hanging or the address has been deduced from the identifier.
knows the “type” of requested object from the root. Therefore, it uses this information to re
to the EvtPersistencySvc to load the object.

• The EvtPersistencySvc selects the appropriate Converter from a set of Converters that have been
declared at initialization by using the “type”. The Converter is called and locates the object in th
persistent store and creates a transient representation of the same object initialized with th
information of the persistent. It also fills the references of the new object to the other event
detector data objects using the EventDataSvc or DetectorDataSvc.

• The new created data object is then registered by the EvtPersistencySvc and makes it available to
the Algorithm that requested it.

• Storing transient data objects after the processing is done following a similar collaboration
between the EvtPersistencySvc, EventDataSvc and the adequate Converter.

3.10.3Detector data synchronization
The detector data must be kept synchronized with the event which is currently being processe
is essential since the calibration, alignment and environmental data may change at any m
during the execution of the job.

• When a new event root is loaded in the transient event store, the DetectorDataSvc is informed by
the ApplicationMgr together with the information of the event time.

• Each data object in the transient detector store has a validity time range. Assuming that the
events are ordered in time (this simplifies the case), the DetectorDataSvc compares the current
event time with the next time that any data becomes invalid.

• For most of the events, there is no action to be done since generally the validity ranges co
many events. But in some cases, the DetectorDataSvc will scan all the transient detector store an
look for objects that need to be updated.

• The update of the object is done by the DetPersistencySvc which has the knowledge of how to
find the new object in question knowing the event time.

• The object members are updated without the need to delete and create new objects. In thi
references to them are still valid, so Algorithms can just use them without the need of knowing
that a new calibration or alignment is being used.
30 GAUDI

Component Interactions
Event Transient Store

Algorithm

object
Converter

EvtPersistencySvc

EventDataSvc

Persistent
StorageMS

1:retrieveObject

2:getAddress

Node:DataObject

:DataObject

3

4:createObj

5:createObj

6:read

7:new{}

8

9:register
10

EventDataSvc

ApplicationMgr

1:setRoot

2:retrieveObj

3:checkValidity

Detector Transient Store

DetectorDataSvc

:DataObject

4:checkValidity

DetPersistencySvc

5:updateObj

object
Converter

Persistent
StorageMS6:updateObj

7:read
8:update

(a)

(b)

Illustration 3.7 Collaboration diagrams for some basic functionality of the transient event and detector data stores: (a)

retrieving and storing event data objects, (b) synchronizing the transient detector store with the current
event time.
GAUDI 31

System Design

 as part

kes

ncies

ting a

eader
vided

itory and
kages

onents
3.11 Physical Design

For large software systems, such as ours, it is clearly important to decompose the system
into hierarchies of smaller more manageable components.This decomposition of the system
can have important consequences for implementation related issues, such as compile-time
coupling, link-time dependencies, size of executables etc. The architecture must therefore
take into account physical design issues as well as the logical structure.

Physical design focuses on the physical structure of the system. A physical component is the
smallest unit of physical design and may contain several classes that together cooperate to
provide some higher level functionality. However larger systems require hierarchical
physical organization beyond the hierarchy of components. This can be achieved by
grouping related components together into a cohesive physical unit, which we call a
package. The notation used to represent packages follows that of Lakos [5] and is shown in
Illustration 3.8. Dependencies between packages reflect the overall dependencies among the
components comprising each subsystem.

A package is a collection of components that have a cohesive semantic purpose. It might
also consist of a loosely coupled collection of low-level re-usable components, such as STL.
In general the dependencies between packages are acyclic (cyclic dependencies should be
avoided at all costs). Physically a package consists of a number of header files and a single
library file.

Organizing software in terms of packages has several advantages:

• each package can be owned and authored by a single developer

• acceptable dependencies can be specified, and approved by the system architect,
of the overall system design

• highly coupled parts of the system can be assigned to a single package which ma
change management easier

• packaging aids incremental comprehension, testing and reuse

A design goal of physical design is to minimize the number of package depende
(Illustration 3.8 gives an example) which is done for the following reasons:

• improves usability i.e. do not link huge libraries just to use simple functions

• reduces number of libraries that must be linked

• minimizes size of executable image

Dependencies can be minimized by repackaging components e.g. by escala
component from a lower to a higher level.

Usability is enhanced by minimizing the number of header files that are exported. H
files are exported only if a client of the package needs access to the functionality pro
by that component.

Physical design also addresses issues related to the management of the code repos
release mechanism. The directory structure directly supports the organization of pac
and, the allocation of files to subdirectories depends on whether interfaces of comp
are public or private.
32 GAUDI

Physical Design
A package x DependsOn another package y if 1 or more
components in x DependsOn one or more components in y

k l

i j

Package Level 2 Level 2

Level 1

f g

b

ha

c d e
Package Level 1

Package a

Package b

DependsOn

v

s

lk

u

r

p q

ohgi

a b c j t d m e f n

v

s

lk

u

r

p q

o

hg

i

a b c

j

t

d

m

e f

n

Pkg A

Pkg B Pkg C

Pkg D

L1

L2

L1

L2

L1

L2

L3

L4

L1

L2

L1

L2

L3

L4

L5

L6

Illustration 3.8 Components, packages and their dependencies
GAUDI 33

System Design

34 GAUDI

4

Application Manager

The Application Manager (ApplicationMgr) is the component that steers the execution of
the data processing application. There is only one instance of ApplicationMgr per
application.

In this chapter we will describe the functionality of this component, the interfaces it offers to
other components and its dependencies.

4.1 Purpose and Functionality 36

4.2 Interfaces . 36

4.3 Dependencies . 38
GAUDI 35

Application Manager

. It
vent

ments
llow
tc.).

 etc. is

o

 to the

the

lt
e
4.1 Purpose and Functionality

The main purpose of the Application Manager (ApplicationMgr) is to steer any data processing
application. This includes all data processing applications for LHCb data at all stages: simulation,
reconstruction, analysis, high level triggers, etc. Specific implementations of the ApplicationMgr will
be developed to cope with the different environments (on-line, off-line, interactive, batch, etc.). The
ApplicationMgr implements the following functionality:

• The event loop. For traditional batch processing applications it implements the “event loop”
initializes all the components and services of the application. In particular it initializes the e
selector component with the selection criteria for the current job (which events need to be
processed, etc.). Then it requests the processing services of all the relevant processing ele
(Algorithms) for each event. Finally, it informs all the components when the job is done to a
them to perform the necessary actions at the end of job (saving histograms, job statistics, e

• Bootstraping the application. The ApplicationMgr is in charge of creating all the services and
processing components (Algorithms) needed to provide the desired functionality. The concrete
type of these components depending on the persistent object store, user interface system,
selected at run time based on the job options.

• Service & Algorithm information center. It maintains a directory of the major Services and
Algorithms which have been created by it directly or indirectly. It allows other components t
locate the requested service based on a name.

4.2 Interfaces

The ApplicationMgr provides the following interfaces:

• Service locator (ISvcLocator). Algorithms and services may ask the ApplicationMgr for
references to existing services belonging to the application. For example, to get a reference
MessageSvc which is needed by the Algorithm in order to output an error message.

• User interface (IAppMgrUI). Interface to the user interface to allow the user to interact with
application. This interface is necessary for non-batch oriented applications.

• Properties interface (IProperty). This interface allows other components to modify the defau
behavior of the ApplicationMgr by setting new values to properties. This interface is the sam
interface implemented by the Algorithms and other components.
36 GAUDI

Interfaces
ApplicationMgr

run()

<<interface>>
IProperty

setProperty()
getProperty()

<<interface>>
ISvcLocator

getService()
existsService()
addService()
removeService()

<<interface>>
IAppMgrUI

nextEvent()
terminate()
finalize()
initialize()

MessageSvc

JobOptionsSvc
IQueryOptions

IMessage

EventDataSvc

AlgorithmFactory
ICreate

DetectorDataSvc

EventSelector
ISelector

ListSvc

ListAlg

IDataMgr

IDataProvider

IDataProvider

IDataMgr

Configured

Initialized

Active

DoingEventChangeCond

Stopped

(a)

(b)

Illustration 4.1 The ApplicationMgr main class diagram (a) and state diagram (b)
GAUDI 37

Application Manager

hese
 be

t of
4.3 Dependencies

The ApplicationMgr depends on the following services provided by other components of the
architecture:

• Job options service (JobOptionsSvc). The JobOptionsSvc service provides to the ApplicationMgr
the new values for its properties in case the user would like to overwrite the default ones. T
properties may drive the choice of the persistent mechanism, the algorithms which need to
instantiated, the output stream for error messages, etc.

• Message service (MessageSvc). The ApplicationMgr uses the MessageSvc to report errors and
informational messages to the end user.

• Algorithm factory (AlgorithmFactory). The ApplicationMgr uses the AlgorithmFactory service to
create (instantiate) the concrete implementations of the Algorithm. In that way, the
ApplicationMgr does not need to be changed when new algorithms are introduced into the
system.

• Algorithms. Algorithms do the real physics data processing work.

• Event selector (EventSelector). The ApplicationMgr uses the event selector to generate the se
events which will processed by the application.
38 GAUDI

5

Algorithms

The Algorithm component is the support structure for real computational code. Any code
that a user would like to be executed within the framework must conform to the Algorithm
component specification1. This code may be for detector simulation, track reconstruction,
calorimeter cluster finding, analysis of B-decays or whatever. In practice ensuring this
conformity will be implemented by providing an Algorithm base class which must be
extended to form concrete algorithms. A general algorithm has properties or parameters
which tune the computation, one or more sources of input data, and one or more sources of
output data.

In this chapter we describe the Algorithm base class from which all concrete algorithms
must inherit. This interface allows the end-user to assemble and configure complex
applications using basic algorithms as building blocks.

5.1 Purpose and Functionality 40

5.2 Interfaces . 40

5.3 Dependencies . 40

1 Except ofcourse for specialised things such as converters.
GAUDI 39

Algorithms

 of

ture:

e

ess
5.1 Purpose and Functionality

The purpose of a concrete algorithm is to convert a set of input data into a set of output data. The
actual computation depends upon the specific algorithm and also upon the values of any internal
parameters which may be set, for example, by the job options service.

Algorithms may only request data from the transient data services, e.g. the eventDataSvc, they know
nothing of the persistent world. Similarly any data produced by an algorithm which is to be passed
onto another algorithm or which is to be made persistent must be registed in one of these stores.

An algorithm may be executed once per event, or many times per event. For some types of algorithm
it may be interesting to execute them only in response to certain events, e.g. when the run changes or
when the current job is finished. Algorithms may be executed directly by the application manager or,
if nested, by the parent algorithm.

5.2 Interfaces

The Algorithm provides the following interfaces:

• Execution interface (IAlgorithm). It is through this interface that algorithm configuration and
execution is performed.

• Properties interface (IProperty). The Properties interface provides a hook to allow the setting
the internal attributes of a concrete algorithm

5.3 Dependencies

The Algorithm depends on the following services provided by other components of the architec

• Job options service (JobOptionsSvc). The JobOptionsSvc service provides to the Algorithm the
new values for its properties in case the user would like to overwrite the default ones. Thes
properties may change the internal behavior of the Algorithm.

• Event data service (EventDataSvc). The Algorithm used the EventDataSvc to get access to the
data objects it needs to perform its function.

• Message service (MessageSvc). The Algorithm may need to send messages reporting its progr
or errors occurring either for debugging or logging.

• Algorithm factory (AlgorithmFactory). The Algorithm uses the AlgorithmFactory service to
create (instantiated) the concrete implementations of other Algorithms.

• Algorithms. The Algorithm may use other smaller algorithms to implement its function.

• Other services like EvtPersistecySvc, EventSelector, etc. are initialized by the ApplicationMgr in
40 GAUDI

Dependencies
Algorithm

<<interface>>
IProperty

setProperty()
getProperty()

<<interface>>
IAlgorithm

doChange()
execute()
finalize()
initialize()

MessageSvc

JobOptionsSvc
IQueryOptions

IMessage

EventDataSvc

AlgorithmFactory
ICreate

DetectorDataSvc

IDataProvider

IDataProvider

(a)

Initialized

Active

Offline

finalize() initialize()

execute()

doChange()

(b)

Illustration 5.1 (a) The Algorithm class diagram

(b) The Algorithm internal state diagram
GAUDI 41

Algorithms

42 GAUDI

6

Data Converter

A data Converter is responsible for translating data objects from one representation into
another. Concrete examples are e.g. converters creating transient objects representing parts
of an event from the persistent (and disk based) representations, or converters creating a
textual representation of data objects for printing to the alphanumeric terminal. Specific
Converters will be to be needed for each data type that needs to be converted. Any code that
a user needs to execute for converting data objects from one representation into another
must conform to the Converter component specification. In practice ensuring this
conformity will be implemented by providing an Converter base class which must be
extended to form concrete converters.

In this chapter we describe the Converter base class from which all concrete converters
must inherit.

6.1 Purpose and Functionality 44

6.2 Interfaces . 46

6.3 Dependencies . 46
GAUDI 43

Data Converter

ielding

ich are
 a given

hich

 object.

ess:

ects.

tions.

y the

essible

6.1 Purpose and Functionality

The data converters are responsible for translating data from one representation into another.
Concrete examples are e.g. converters creating transient objects from their persistent (disk based)
representations. Converters will have to deal with the technology both representations are based on:
in the upper example they have to know about the database internals as well as the structure of the
transient representations. The converters know about the mechanism to retrieve persistent objects
(ZEBRA, Objectivity, …) and only pass abstract instances of the converted objects, hence sh
the calling service from internals.

Data converters are meant to be light. This means there will not be all-in-one converters, wh
able to convert the “world”, but rather many converters, each able to create a representation of
type.

In order to function a converter must be able to

• Answer (when asked) which kind of representation the converter is able to create and on w
kind of data store the source representation of the object resides.

• Retrieve the source object from the source store.

• Create the requested transient representation using the information contained in the source

• Initialize pointers in the transient representation of the created object.

• Update the transient representation using the information contained in the source object.

• Update pointers in the transient representation of the created object.

• Convert the transient representation to its target (e.g. persistent) representation.

• Resolve references within the target representation (persistent references).

• Update the target representation from the transient representation.

• Update references within the target representation (persistent references).

The conversion/creation mechanism of an object into another representation is a two step proc

• Firstly the raw object will be translated. This does not include any links pointing to other obj

• At the second step the link will be converted.

Concrete user converters are based on a base class which deals with the technology specific ac
The concrete converters hence only deal with data internal to the objects, e.g.

• Resolving pointers of the transient objects to objects in the detector description.

• Fill/update contained entries in the persistent representation which will not be identifiable b
persistent store.

• The base class is in charge of resolving the generic “identifiable” references as they are acc
from the directory of the transient DataObject. It is understood, that there is a correspondence
between the identifiable entries e.g. in the transient world and the persistent world.
44 GAUDI

Purpose and Functionality
IInterface
<<Interface>>

IConverter
<<Interface>>

Converter
<<Implementation>

ObjtyConverter
<<Implementation>

ConcreteConverter
<<Implementation>

SicBxxConverter
<<Implementation>

IConverter

initialize () : StatusCode
getObjDataType () : const Class*
getRepSvcType () : unsigned char
createObj (pAddress : IOpaqueAddress*, refpObject : DataObject*&) : StatusCode
fillObjRefs (pAddress : IOpaqueAddress*, pObject : DataObject*) : StatusCode
updateObj (pAddress : IOpaqueAddress*, pObject : DataObject*) : StatusCode
updateObjRefs (pObject : DataObject*) : StatusCode
createRep (pObject : DataObject*, refpAddress : IOpaqueAddress*&) : StatusCode
fillRepRefs (pAddress : IOpaqueAddress*, pObject : DataObject*) : StatusCode
updateRep (pAddress : IOpaqueAddress*, pObject : DataObject*) : StatusCode
updateRepRefs (pAddress : IOpaqueAddress*, pObject : DataObject*) : StatusCode

<<Interface>>

Illustration 6.1 The Converter class diagram with a possible layering of increased functionality: ObjtyConverter and

SicBxxConverter can already handle the abstract data model leaving only “primitives” to the concrete
converter. Below the provisional definition of the interface as it is known to the calling services.
GAUDI 45

Data Converter

s

BRA,
6.2 Interfaces

IConverter: The interface allows the calling services to pass the necessary information to the
converter and to interact without coupling to internals.

6.3 Dependencies

The Converter depends on the following services provided by other components of the architecture:

• The generic Converter implementation (Converter) offers some standard functionality and ease
n the implementation of specific converters.

• Message service (MessageSvc). The Converter uses the MessageSvc to report errors and
informational messages to the end user.

• The data storage technology: Converters will have to deal with specific data stores like ZE
Objectivity etc.
46 GAUDI

7

Job Options Service

The purpose of the job options service is to supply the options for the current job to other
components of the architecture. It is assumed that facilities allowing the user to edit the
options and to save or retrieve sets of them for future use are supplied outside this service.

7.1 Purpose and Functionality 48

7.2 Interfaces . 48

7.3 Dependencies . 50
GAUDI 47

Job Options Service

tions

 is

ions.
o

en
7.1 Purpose and Functionality

The purpose of the job options service is to supply the options for the current job to other components
of the architecture. It is assumed that facilities allowing the user to edit the options and to save or
retrieve sets of them for future use are supplied outside this service.

The options may consist of:

• Flags that select the algorithms to be run in the current job.

• Values that override default properties of the algorithms

• Definition of the input data set

• Selection criteria for the input data

• Definition of output data streams (e.g. for event data, histogram data etc.)

• Definition of error reporting streams

• Etc.

A set of options is identified by the name of the set (SetName) (For example SetName could be the
full pathname of a file if the options are contained in a text file, or the identifier of a set in the op
database)

An option modifies the properties of a client. Each option consists of:

• The name of the client (ClientName) to whose properties will be modified by this option.

• The name of the property to be modified (PropertyName)

• The new value (or values) of the property (PropertyValues) (T = bool, int, double, string)

7.2 Interfaces

The JobOptionsSvc provides the following interfaces:

• Query options interface (IQueryOptions). This interface exposes the functionality of the
JobOptionsSvc. It provides the following methods:

• configure(string SetName) This method allows a client to specify which set of job options
to be used in the current context. Usually this will be used only once per job when
JobOptionsSvc is created.

• setMyProperties(IProperty *me, string ClientName) This method is used by a client who
wants to override the default values of its properties with those described in the job opt
The client must implement the IProperty interface, which will be used by setMyProperties t
set the client's properties.

• getOption(string ClientName, string PropertyName, vector<T> PropertyValues) This
method allows clients to retrieve the job option which modifies a given property of a giv
client in the current context, if that option exists.
48 GAUDI

Interfaces
JobOptSvc

<<interface>>
IQueryOptions

configure()
setMyProperties()
getOption()

AClient
IsetProperty

OptionsEditorOptionsArchive

Illustration 7.1 The JobOptionsSvc class diagram
GAUDI 49

Job Options Service

his

xt
7.3 Dependencies

A given PropertyName can occur only once for a given ClientName. This implies that different
instances of a client class must have a different ClientName if they need different PropertyValues for
a given PropertyName.

The JobOptionsSvc depends on the following services provided by other components of the
architecture:

• ApplicationMgr. The context must be initialized by an external client. It is assumed that the
SetName is provided by the user e.g. as an input argument to main() or as an environment
variable.

• IProperty interface. Clients wishing to use the setMyProperties method must implement this
interface.

• OptionsArchive. An archive is needed for previously defined sets of options. For example t
could be a set of text files, or a database.

• OptionsEditor. An editor is needed to edit the set of options. For example this could be a te
editor, or a database editor.
50 GAUDI

8

Event Selector

The event selector allows an end user to select, on the basis of physical properties, which
events will be processed by an application. The event selector is the component which
knows what is the next event to be processed.

In this chapter we will describe the functionality envisaged for this component, the
interfaces it offers to other components and its dependencies.

8.1 Purpose and Functionality 52

8.2 Interfaces . 52
GAUDI 51

Event Selector

nd

ery
hether

 to

ns could

are
 these

 “event

 data

8.1 Purpose and Functionality

The event selector (EventSelector) component is able to produce a list of events from a given set of
“selection criteria”. In general, for batch oriented applications, it is the ApplicationMgr that provides
the “selection criteria” to the EventSelector. For interactive applications, it is required that the e
user has the possibility to interact directly with the EventSelector by means of the UserInterface
component. The complexity of the “selection criteria” can vary from very simple to v
sophisticated involving looking at the event data and running some selection code to decide w
the event is selected or not. Here are some examples of “selection criteria”:

• All the events of a given run number or within a range of run numbers.

• All the events between two dates that belong to a certain event classification.

• A discrete list of run number, event number pairs.

• All the events of a given persistent “event collection” identified by a name.

• A complex SQL query in the event data ODBMS.

• etc.

The EventSelector provides one or more iterator types to be used by the ApplicationMgr. It is the role
of the ApplicationMgr to enquire of the EventSelector which is the next event to be processed and
setup correctly the corresponding data stores with that information. The EventSelector does not
necessarily need to have in memory all the handles of the selected events since event selectio
be very big.

It is not the role of the EventSelector to create persistent “event collections”. These collections
created by specialized applications called “event selection applications”. The purpose of
applications is to processes events from some general collections (i.e. runs), apply physics Algorithms
and select only those events that pass all the physics selection criteria, and finally to create an
collection” as output.

Responsibilities

• The EventSelector must be capable of examining data from any of the possible sources e.g.
stored in an Objectivity database, data stored in ZEBRA format on tape etc.

• The EventSelector will accept user defined selection function objects.

8.2 Interfaces

The EventSelector provides the following interfaces:

• Event selection interface (IEvtSelector). This interface is used to tell the selector what is the
selection criteria, declare user selection functions, and obtain references to iterators.

• Selection user interface (ISelectorUI). This is the interface used by the UserInterface component
which allows the end user to interact with the selector.

• Properties interface (IProperty). This interface allows other components to modify the default
behavior of the EventSelector by assigning new values to its properties.
52 GAUDI

Interfaces
MessageSvc

JobOptionsSvc
IQueryOptions

IMessage

EventSelector

Selector

<<interface>>
IProperty

setProperty()
getProperty()

<<interface>>
IEvtSelector

setCriteria()
getIterator()

<<interface>>
ISelectorUI

Illustration 8.1 The EventSelector class diagram
GAUDI 53

Event Selector

54 GAUDI

ce for
9

Transient Data Store

A transient data store is a passive component which acts as the “logical” storage pla
transient data objects.

9.1 Purpose and Functionality 56

9.2 Interfaces . 56

9.3 Dependencies . 56
GAUDI 55

Transient Data Store

Store is
terface

rder to
ed and

ed-to

e so as
ion of

nted
t
obeyed.

nt of the
9.1 Purpose and Functionality

We envisage several transient data stores within one application, each characterized by the lifetime
and nature of the contained data. For example, there is the Transient Event Data Store for event data,
the Transient Detector Data Store for detector, alignment and calibration data, and the Transient
Histogram Data Store for histograms and other “statistics based” objects.

A Transient Data Store is managed by a Data service, for example the Transient Event Data
managed by the Transient Event Data Service (EventDataSvc). This service implements an in
which is used by clients and in particular by Algorithms to access the data within the store. In o
find required data it is assumed that a client knows how the data is organized, and identifi
obeys the relevant ownership conventions. Key issues related to transient stores are:

• Data Organization. The data within a data store is organized as tree, see Section 3.4.

• Data Identification. Any data object in the data store has an identifier, allowing it to be refer
by a client [Section 3.4].

• Data ownership. Data objects within a data store are owned by the data service that is managing
that store. In particular if a new data object is created by a client and registered into the stor
to make it available to other algorithms then that client is no longer responsible for the delet
the object. Infact after registration they must not delete the object or change essential
characteristics such as the identification, etc..

• Lifetime. References to objects in the data stores are valid only during a specific (store
dependent) time span. For example, references to event data objects become invalid
immeadiately the next event is loaded.

9.2 Interfaces

The Transient Data Store does not offer any interface directly to clients. The interface is impleme
by the corresponding Data Service. Clients of a Transient Data Store are allowed to keep direc
references to objects in the store as long as the validity period and ownership conventions are

9.3 Dependencies

Since the Transient Data Store is a passive component it does not need any other compone
system to perform its function (storing data objects is memory).
56 GAUDI

Dependencies
Specific

Generic

Identifiable

Directory

<<interface>>
IClassInfo

DataObject

Event

RecEvent

EventTag

EcalHits EcalClusts

Hit Cluster

Illustration 9.1 The class diagram for the Data Objects in the store.
GAUDI 57

Transient Data Store

58 GAUDI

10

Event Data Service

The event data service manages the transient event data store. This component provides the
necessary functionality required by algorithms and the application manager to locate data
object within the transient store and to register new ones.

10.1 Purpose and Functionality 60

10.2 Interfaces . 60

10.3 Dependencies . 62
GAUDI 59

Event Data Service

n
e

ested
 to load

p
anager.

quest.

ervice.

charge
sible

s

w event,
ion
10.1 Purpose and Functionality

The event data service manages the transient event data store. The service interacts mainly with two
components: Algorithms and the ApplicationMgr.

• The event data service is used by the Algorithms as an input/output channel for data objects. A
algorithm may request objects from the store, or register them into the store so that they ar
available to other algorithms.

• The event data service delivers references to event data objects on request. If the requ
data objects are not present, the event data service asks the event persistency service
the required objects and then makes them availible to the algorithm.

• Once event data objects are registered to the event data service, the algorithm gives u
ownership. The event data service releases the objects on request of the application m

• Event data objects must be identifiable in order to be added to the data store.

• The registration of data must respect the tree structure of the transient store.

• The application manager tells the event data service which event to deal with in case of a re

• Clients of the event data service can decide which data should be made persistent:

• Clients may decide to discard partially or completely the data objects managed by the s

• The event data service must be able to deliver transient data objects to the services in
of creating other data representations like the persistency service or the service respon
for creating graphical representations.

10.2 Interfaces

The EventDataSvc implements the following interfaces:

• Generic service interface (IService) for specific interaction like e.g. query the service name.

• Storage management (IDataManagerSvc): This interface supplies global management action
on the transient data store. This interface is used by the ApplicationMgr. Through this interface
actions necessary to manipulate event related data globally, such as requests to load a ne
discard the objects owned by the service etc. are handled. The interface also allows select
collectors using selection agents to traverse through the data store.

• Data provider (IDataProviderSvc): The interface used by the Algorithms to request or register
event data objects.
60 GAUDI

Interfaces
IDataManagerSvc
<<Interface>>

IDataProviderSvc
<<Interface>>

IService
<<Interface>>

Service
<<Implementation>>

EventDataSvc
<<Implementation>>

IEventDataSvc
<<Interface>>

Specific interface

not existant
- for future extensions

IInterface
<<Interface>>

_root

0..1

IRegistryEntry
<<Interface>>

_dataLoader

0..1
IConversionSvc
<<Interface>>

DataSvc
<<Implementation>>

0..1

Generic data service

0..1

Transient
 Data Store

Service to retrieve
nonexistant objects

Availible
Interfaces

IDataManagerSvc

setRoot (pRootObj : DataObject*, top_path : const string&) : StatusCode
setDataLoader (service : IPersistencySvc*) : StatusCode
clearStore () : StatusCode
clearSubTree (sub_tree_path : const string&) : StatusCode
clearSubTree (pObject : DataObject*) : StatusCode
traverseTree (pSelector : ISelectionAgent*) : StatusCode
traverseSubTree (sub_tree_path : const string&, pSelector : ISelectionAgent*) : StatusCode
traverseSubTree (pObject : DataObject*, pSelector : ISelectionAgent*) : StatusCode

<<Interface>>

IDataProviderSvc

retrieveObject (full_path : const string&, refpObject : DataObject*&) : StatusCode
retrieveObject (root_obj : DataObject*, refpObject : DataObject*&) : StatusCode
registerObject (root_path : const string&, obj : DataObject*) : StatusCode
registerObject (root_obj : DataObject*, obj : DataObject*) : StatusCode
unregisterObject (path : const string&) : StatusCode
unregisterObject (obj : DataObject*) : StatusCode
findObject (full_path : const string&, pRefObject : DataObject*&) : StatusCode
findObject (pNode : DataObject*, leaf_name : const string&, pRefObject : DataObject*&) : StatusCode

<<Interface>>

Illustration 10.1 The EventDataSvc class diagram and the provisional defintion of the interfaces.
GAUDI 61

Event Data Service

ny

s. The
rvice.

o
ends on

re in
 other
10.3 Dependencies

The EventDataSvc depends on the following services provided by other components of the
architecture :

• The generic service (Service) implementation which defines basic properties and abilities of a
service.

• Job options service (JobOptionsSvc). The JobOptionsSvc service provides to the EventDataSvc
the new values for the its properties in case the user would like to overwrite the default one
implementation of the event data service only depends on the interface of the job option se

• Message service (MessageSvc). The EventDataSvc uses the MessageSvc to report errors and
informational messages to the end user. The implementation of the event data service only
depends on the interface of the message service.

• Event persistency service (EvtPersistencySvc). The EventDataSvc uses the persistency service t
create transient objects on demand. The implementation of the event data service only dep
the interface of the persistency service.

• Data selection agents (ISelectionAgent). Data selector agents are used to traverse the data sto
order to analyse the content e.g. to collect references to objects which should be passed to
services.
62 GAUDI

11

Event Persistency Service

The event persistency service delivers data objects from a persistent store to the transient
data store and vice versa. The persistency service collaborates with the event data service to
provide the data requested by an algorithm in the case that the data is not yet in the transient
store. This service requires the help of specific converters which actually perform the
conversion of data objects between their transient and persistent representations.

11.1 Purpose and Functionality 64

11.2 Interfaces . 64

11.3 Dependencies . 66
GAUDI 63

Event Persistency Service

e

 data is
objects
oaded”

ither one

t a
e.g.
which

. This
d,
11.1 Purpose and Functionality

The purpose of the event persistency service (EvtPersistencySvc) is the extraction of persistent
objects from the persistent data store and their conversion to the appropriate transient types, and the
inverse process.

The creation of a transient object proceeds as follows:

• given an identifier, the service locates the object in the persistent world,

• the appropriate Converter for this type is selected,

• the persistency service invokes the converter and finally

• delivers the requested transient object to the client.

The object identifier needs only to be interpreted by the Converter, it is not needed anywhere outsid
the converter.

If it is known in advance that not a single object, but instead a complete tree or part of a tree of
required, then the service can optimize the procedure. For example, sub-trees or a list of
required in every event may be specified to the persistency service and the objects “pre-l
before they are requested by an algorithm.

To populate the persistent data store is slightly different:

• the persistency service is given transient objects,

• it finds the proper converter for the received object,

• it invokes the object conversion using this converter and

• stores the persistent object.,

Converters being able to create persistent representations must be assigned to the service e
by one or in the form of a factory.

Converters are declared to the EvtPersistencySvc at run-time and therefore they need to implemen
common interface. The Converters know about the mechanism to retrieve persistent objects (
from ZEBRA, Objy,...) and to create their transient representation and vice-versa. Identifying
Converter is able to convert a specific instance is achieved by associating each Converter to a unique
run-time independent class identifier.

11.2 Interfaces

The EvtPersistencySvc provides the following interfaces:

• Generic service interface (IService) for interactions such as querying the service name.

• Generic data conversion interface (IConversionSvc). This interface is capable to accept
converters or a converter factory necessary to create persistent event data representations
interface also accepts data selectors which tell the service which objects have to be create
converted or updated.

• Persistency specific interface (IPersistencySvc). This interface will handle - if needed - specific
interactions with the persistent store.
64 GAUDI

Interfaces
IService
<<Interface>>

IInterface
<<Interface>>

Service
<<Implementation>

IPersistencySvc
<<Interface>>

_converter

1..1

IConverter
<<Interface>>

_type1..1

Class
<<Implementation>>

ConversionSvc
<<Implementation>

_knownConverters

0..*

ListEntry
<<struct>>

1..1

1..1

0..*

For later
improved
functionality

PersistentSvc
<<Implementation>

Service
Dispatcher

Workers responsible
for different database
technologies

_dataServices

0..*

IConversionSvc
<<Interface>>

EvtPersistencySvc
<<Implementation>

0..*

Availible
Interfaces

Extension Interface

IConversionSvc

initialize () : StatusCode
stop () : StatusCode
addConverter (pConverter : IConverter*) : StatusCode
removeConverter (pConverter : IConverter*) : StatusCode
createObj (pAddress : IOpaqueAddress*, refpObject : DataObject*&) : StatusCode
updateObj (pAddress : IOpaqueAddress*) : StatusCode
updateReps (pSelector : IDataSelector*) : StatusCode
createReps (pSelector : IDataSelector*) : StatusCode

<<Interface>>

Illustration 11.1 The EvtPersistencySvc and the provisional interface.
GAUDI 65

Event Persistency Service

ny

ite
n the

service

vent

em
11.3 Dependencies

The EvtPersistencySvc depends on the following services provided by other components of the
architecture:

• The generic service (Service) implementation which defines basic properties and abilities of a
service.

• Job options service (JobOptionsSvc). The JobOptionsSvc service provides to the
EvtPersistencySvc the new values for the its properties in case the user would like to overwr
the default ones. The implementation of the event data persistency service only depends o
interface of the job option service.

• Message service (MessageSvc). The EvtPersistencySvc uses the MessageSvc to report errors and
informational messages to the end user. The implementation of the event data persistency
only depends on the interface of the message service.

• Event data service (EventDataSvc). The EvtPersistencySvc collaborates very closely with the
DetPersistencySvc to load or update detector objects in to store. The implementation of the e
data persistency service only depends on the interfaces of the data service.

• Data item selectors (DataItemSelector). If persistent data must be updated or new persistent
objects must be created an object selection is passed to the service in form of a selected it
collection. The service will retrieve all selected items from the selector.
66 GAUDI

12

Detector Data Service

The detector data service manages the transient detector data store. This component is very
similar to the event data service with regards to the retrieval and registration of data objects.
However in addition it is responsible for the management of such things as the
synchronization of detector information to the current event.

12.1 Purpose and Functionality 68

12.2 Interfaces . 70

12.3 Dependencies . 70
GAUDI 67

Detector Data Service

stants
ot be
lid and

e must:

st stay
reated.

y event
or data

 data

sistency

to the

ves up
tion

ice.

arge of
or
12.1 Purpose and Functionality

The detector data service manages the transient detector data store. The service interacts with several
other components: the application manager, algorithms and event data converters whenever event
data structures have references to detector data.

Besides providing requested data, the detector data service also has to check the validity of the data
since detector data are not “static” over the entire lifetime of a job. For example calibration con
will change with time and the set of constants which is valid for the first events in the job may n
valid for last events. Hence the detector data service must be able to distinguish between va
invalid data with respect to a given event.

Invalid data may be discarded or updated, i.e. given a valid time stamp the detector data servic

• direct new detector data requests to the proper, valid data objects.

• request the loading of up-to-date detector data objects if they are not present in the store.

Algorithms will initialize references to detector data at configuration time. These references mu
valid over the analyzed event range and so the objects will have to be updated rather than rec

This means, that the detector data service is not stateless. It will have to be validated for ever
ensuring that the contained references are valid. In order to optimize data validity the detect
objects which should automatically be updated must be marked.

• The detector data service is used by the algorithms as an input/output channel for detector
objects:

• The detector data service delivers references to detector data objects on request. If the
requested data objects are not present, the detector data service asks the detector per
service to deliver the objects and makes them available to the algorithm.

• Detector data objects intended to be available to (other) algorithms must be registered
detector data service.

• Once detector data objects are registered to the detector data service, the algorithm gi
ownership. The detector data service releases the objects at the request of the applica
manager.

• Detector data objects must be identifiable in order to be added to the data store.

• The registration of data must follow the hierarchy of the detector data objects.

• Clients of the detector data service can decide which data should be made persistent:

• Clients may decide to discard partially or completely the data objects managed by the serv

• The detector data service must be able to deliver transient data objects to the services in ch
creating other data representations like the persistency service or the service responsible f
creating graphical representations
68 GAUDI

Purpose and Functionality
IDataManagerSvc
<<Interface>>

IDataProviderSvc
<<Interface>>

IService
<<Interface>>

Service
<<Implementation>>

IInterface
<<Interface>>

_root

0..1

IRegistryEntry
<<Interface>>

DataSvc
<<Implementation>>

0..1

_dataLoader

0..1

IConversionSvc
<<Interface>>

0..1

DetectorDataSvc
<<Implementation>>

IDetectorDataSvc
<<Interface>>

not existant
- for future extensions

Transient
 Data Store

Service to retrieve
nonexistant objects

Specific interface

Availible
Interfaces

IDataManagerSvc

setRoot (pRootObj : DataObject*, top_path : const string&) : StatusCode
setDataLoader (service : IPersistencySvc*) : StatusCode
clearStore () : StatusCode
clearSubTree (sub_tree_path : const string&) : StatusCode
clearSubTree (pObject : DataObject*) : StatusCode
traverseTree (pSelector : ISelectionAgent*) : StatusCode
traverseSubTree (sub_tree_path : const string&, pSelector : ISelectionAgent*) : StatusCode
traverseSubTree (pObject : DataObject*, pSelector : ISelectionAgent*) : StatusCode

<<Interface>>

IDataProviderSvc

retrieveObject (full_path : const string&, refpObject : DataObject*&) : StatusCode
retrieveObject (root_obj : DataObject*, refpObject : DataObject*&) : StatusCode
registerObject (root_path : const string&, obj : DataObject*) : StatusCode
registerObject (root_obj : DataObject*, obj : DataObject*) : StatusCode
unregisterObject (path : const string&) : StatusCode
unregisterObject (obj : DataObject*) : StatusCode
findObject (full_path : const string&, pRefObject : DataObject*&) : StatusCode
findObject (pNode : DataObject*, leaf_name : const string&, pRefObject : DataObject*&) : StatusCode

<<Interface>>

Illustration 12.1 The DetectorDataSvc class diagram and the provisional definition of the interfaces.
GAUDI 69

Detector Data Service

of

re in
 other
12.2 Interfaces

The DetectorDataSvc implements the following interfaces:

• Generic service interface (IService) for such things as querying the service name.

• Storage management (IDataManagerSvc). This interface is used primarily by the
ApplicationMgr to manipulate globally detector related data, e.g. to initialize a new detector
store, to discard the objects owned by the service etc. The interface also allows selection
collectors using selection agents to traverse through the data store.

• Data provider (IDataProviderSvc). The interface is used by the Algorithms to request or register
detector data objects.

12.3 Dependencies

The DetectorDataSvc depends on the following services:

• The generic service (Service) implementation which defines the basic properties and abilities
any service.

• Job options service (JobOptionsSvc). The JobOptionsSvc allows a user to override the default
properties of the service.

• Message service (MessageSvc). The DetectorDataSvc uses the MessageSvc to report errors and
informational messages to the end user.

• Detector persistency service (DetPersistencySvc). The DetectorDataSvc collaborates very closely
with the DetPersistencySvc to load or update detector data objects.

• Data selection agents (ISelectionAgent). Data selector agents are used to traverse the data sto
order to analyse the content e.g. to collect references to objects which should be passed to
services.
70 GAUDI

13

Detector Persistency Service

The detector persistency service delivers transient detector data objects which originally
reside in a persistent store. This service will need to know the model of how different
versions of the detector description, calibration and alignment are stored.

13.1 Purpose and Functionality 72

13.2 Interfaces . 72

13.3 Dependencies . 74
GAUDI 71

Detector Persistency Service

ommon
nism to

 to the
se see

or
ace also
pdated.
13.1 Purpose and Functionality

The purpose of the detector persistency service is the conversion of persistent detector data objects
into transient detector data objects and vice versa. Detector data covers all non event-related data
which is necessary to interpret the event data properly. This consists of geometry data and detector
conditions (calibration data etc.). Usually the lifetime of this data spans many events.

As regards the conversion between transient and persistent types the DetPersistencySvc behaves just
as the EventPersistencySvc does, but additionally:

• The service will delegate object updates to the corresponding data converter.

Converters are given to the Persistency service at run-time and hence have to provide a c
interface in order to be useful to the persistency service. The converters know about the mecha
retrieve persistent objects (e.g. from ZEBRA, Objty,...) and pass created transient objects
service. For a more detailed description of generic data persistency service functionality plea
the description of the EventPersistencySvc.

13.2 Interfaces

The DetPersistencySvc provides the following interfaces:

• Generic service interface (IService)

• Generic data conversion interface (IConversionSvc). This interface is able to accept converters
a converter factory necessary to create persistent detector data representations. This interf
accepts data selectors which tell the service which objects have to be created/converted/u

• Persistency service interface (IPersistencySvc). This interface will handle - if needed - specific
interactions with the persistent store.
72 GAUDI

Interfaces
IService
<<Interface>>

IInterface
<<Interface>>

Service
<<Implementation>

IPersistencySvc
<<Interface>>

_converter

1..1

IConverter
<<Interface>>

_type1..1

Class
<<Implementation>>

ConversionSvc
<<Implementation>

_knownConverters

0..*

ListEntry
<<struct>>

1..1

1..1

0..* For later
improved
functionality

PersistentSvc
<<Implementation>

Service
Dispatcher

Workers responsible
for different database
technologies

_dataServices

0..*

IConversionSvc
<<Interface>>

DetPersistencySvc
<<Implementation>

0..*

Availible
Interfaces

IConversionSvc

initialize () : StatusCode
stop () : StatusCode
addConverter (pConverter : IConverter*) : StatusCode
removeConverter (pConverter : IConverter*) : StatusCode
createObj (pAddress : IOpaqueAddress*, refpObject : DataObject*&) : StatusCode
updateObj (pAddress : IOpaqueAddress*) : StatusCode
updateReps (pSelector : IDataSelector*) : StatusCode
createReps (pSelector : IDataSelector*) : StatusCode

<<Interface>>

Illustration 13.1 The DetPersistencySvc class diagram and the provisional interface.
GAUDI 73

Detector Persistency Service

ny

ite
 on the

ta

rvice.

em
13.3 Dependencies

The DetPersistencySvc depends on the following services provided by other components of the
architecture:

• The generic service (Service) implementation which defines basic properties and abilities of a
service.

• Job options service (JobOptionsSvc). The JobOptionsSvc service provides to the
DetPersistencySvc the new values for the its properties in case the user would like to overwr
the default ones. The implementation of the detector persistency data service only depends
interface of the job option service.

• Message service (MessageSvc). The DetPersistencySvc uses the MessageSvc to report errors and
informational messages to the end user. The implementation of the detector persistency da
service only depends on the interface of the message service.

• Detector data service (DetectorDataSvc). The DetectorDataSvc collaborates very closely with the
DetPersistencySvc to load or update detector objects in to store. The implementation of the
detector persistency data persistency service only depends on the interfaces of the data se

• Data item selectors (DataItemSelector). If persistent data must be updated or new persistent
objects must be created an object selection is passed to the service in form of a selected it
collection. The service will retrieve all selected items from the selector.
74 GAUDI

14

Histogram Data Service

The main purpose of the histogram service is to add histograms or other statistical data to
the transient histogram store and to retrieve them when necessary. This component is very
similar to the event data service with regards to the retrieval and registration of data objects.

14.1 Purpose and Functionality 76

14.2 Interfaces . 76

14.3 Dependencies . 76
GAUDI 75

Histogram Data Service

data
lly the
als

ort
late

 the

d on
14.1 Purpose and Functionality

The main purpose of the Histogram Service is to manage the transient histogram store and in
particular to add or create histograms or other statistical objects and to retrieve them when necessary.
It is servicing mainly the Algorithms.

The service is responsible for the following:

• Support for the creation (booking) of histograms in the transient data store.

• Registering histograms created outside the transient data store.

• Searching for histograms in the transient data store.

• Deletion of histograms in the transient data store.

• Forwarding requests to the HistoPersistencySvc for saving and retrieving histograms from
persistent storage.

The transient histogram store should be a (specialized) instance of a more generic transient
store. It is a separate store mainly because the lifetime of the objects it contains is usua
complete job. By default the ApplicationMgr does not perform managerial actions at regular interv
as is the case for the transient event store.

14.2 Interfaces

The HistoDataSvc provides the following interfaces:

• Storage management (IDataManager). This interface supports the global management of the
transient data storage such as initializing it. This interface is used by the ApplicationMgr.

• Data provider (IDataProviderSvc). The interface used by the Algorithms to request or register
histograms or other statistical objects.

• Histogram service (IHistogramSvc). This interface is used to provide histogram specific supp
to the Algorithms in terms of creating/booking and manipulating them. In this way we can iso
the underlying histogram packages from the Algorithms.

14.3 Dependencies

The HistoDataSvc depends on the following services provided by other components of
architecture:

• Job options service (JobOptionsSvc). For setting the properties of the HistoDataSvc. These
properties may drive the choice of the persistent mechanism, the output stream for error
messages, etc.

• Message service (MessageSvc). The HistoDataSvc uses the MessageSvc to report errors and
informational messages to the end user.

Some of the functionality of the service has to do with the isolation of the Algorithms from a
particular histogram technology. In any case the implementation of the service will depen
specific packages. Currently the options are: HBOOK (CLHEP) or HISTOOGRAM (LHC++).
76 GAUDI

15

Histogram Persistency Service

The histogram persistency service is responsible for storing histograms and N-tuples.

15.1 Purpose and Functionality 78

15.2 Interfaces . 78

15.3 Dependencies . 80
GAUDI 77

Histogram Persistency Service

tions.
 be
15.1 Purpose and Functionality

The histogram persistency service is responsible for storing histograms and N-tuples. The demands to
the persistent histogram store are not much different than for other stores - except that this service
will from individual physicists be rather used to write data rather than read data.

Writing N-tuples essential for physicists to refine data sets is very similar to writing event data.
N-tuples are different from histograms: N-tuples read and analysed later must support navigation to
source data and object linking. N-tuple entries without this functionality are of limited use.

Histograms usually can easily be transformed to flat floating arrays and hence be treated as any other
variable size data type. For this reason no extra demands arise from the persistent representation of a
histogram. The main difference results from the storage area: histograms will be produced and stored
by many users - the results should be stored locally to optimize later access to the results.

15.2 Interfaces

The HistoPersistencySvc provides the following interfaces:

• Generic service interface (IService) for specific interaction like e.g. query the service name.

• Generic data conversion interface (IConversionSvc). This interface is capable to accept
converters or a converter factory necessary to create persistent histogram data representa
This interface also accepts data selectors capable to tell the service which objects have to
created/converted/updated.

• Persistency service interface (IPersistencySvc). This interface will handle - if needed - specific
interactions with the persistent store.
78 GAUDI

Interfaces
IConversionSvc

initialize () : StatusCode
stop () : StatusCode
addConverter (pConverter : IConverter*) : StatusCode
removeConverter (pConverter : IConverter*) : StatusCode
createObj (pAddress : IOpaqueAddress*, refpObject : DataObject*&) : StatusCode
updateObj (pAddress : IOpaqueAddress*) : StatusCode
updateReps (pSelector : IDataSelector*) : StatusCode
createReps (pSelector : IDataSelector*) : StatusCode

<<Interface>>

IService
<<Interface>>

IInterface
<<Interface>>

Service
<<Implementation>

IPersistencySvc
<<Interface>>

_converter

1..1

IConverter
<<Interface>>

_type1..1

Class
<<Implementation>>

ConversionSvc
<<Implementation>

_knownConverters

0..*

ListEntry
<<struct>>

1..1

1..1

0..*

For later
improved
functionality

PersistentSvc
<<Implementation>

Service
Dispatcher

Workers responsible
for different database
technologies

_dataServices

0..*

IConversionSvc
<<Interface>>

HistoPersistencySvc
<<Implementation>>

0..*

Availible
Interfaces

Extension Interface

Illustration 15.1 The HistoPersistencySvc class diagram and the provisional interface.
GAUDI 79

Histogram Persistency Service

s

rite

ds on

ter.
15.3 Dependencies

The depends on the following services provided by other components of the architecture :

• The HistoPersistencySvc generic service (Service) implementation which defines basic propertie
and abilities of any service.

• Job options service (JobOptionsSvc). The JobOptionsSvc service provides to the
HistoPersistencySvc the new values for the its properties in case the user would like to overw
the default ones. The implementation of the depends only on the interface of the job option
service.

• Message service (MessageSvc). The HistoPersistencySvc uses the MessageSvc to report errors
and informational messages to the end user. The implementation of the service only depen
the interface of the message service.

• Histogram data service (HistoDataSvc). The HistoDataSvc collabotates very closely with the
HistoPersistencySvc to load or update histograms and N-tuples which should be analysed la
The implementation of the service depends only on the interfaces of the data service.
80 GAUDI

16

User Interface

The user interface is the component through which the end user interacts with the
components of the system. In general, the components have interfaces to allow clients to
configure and control them. The user interface component is the bridge between the internal
interface (C++) and an interface suitable for human interaction.

16.1 Purpose and Functionality 82

16.2 Interfaces . 82
GAUDI 81

User Interface

r in
.

an

.

under

e UI is

ert the

t to
16.1 Purpose and Functionality

The user interface (UI) is the more or less complex component through which the end user interacts
with the rest of the system. One can immediately think of three ways in which this interaction could
take place:

• A command line interpreter a la UNIX/DOS/VMS etc.

• A Graphical User Interface (GUI). For example one could imagine a tool not unlike explore
order to look at the objects within the event data store (via the event data server of course)

• An interactive (as opposed to passive) event display. Here selecting objects via clicking is
operation which could act on objects, services or algorithms within the framework.

From the UI one would like to be able do at least the following:

• See and modify the properties of any component of the system (services, algorithms, etc.)

• Get the next event.

• Create some data objects.

• Make a selection of data objects from a transient data store.

• Create new Algorithms.

• Run an Algorithm.

• Make use of a service.

• From a command line UI instantiate a passive (i.e. non-interactive) event display.

16.2 Interfaces

There are two types of interface in the UI.

• The interface that the user interacts with. This is completely unspecified, and is completely
the control of the builder of any specific UI.

• The interface between the UI component and the rest of the framework. This is what must be
specified concretely and must be adhered to exactly by all concrete UIs. In the case that th
the client of other components of the system, the UI will limit itself to just call the existing
interfaces of the other components. The other case, where the client is one of the other
components of the system is more complicated. For example if one component wants to al
end user or affect in some way the appearance of the UI (change the color of a button, pop up a
message, produce a beep, etc.) we need to define a standard way for the client componen
interact with the UI. For that, we will need to specify some basic event1 model.

1 Event is the sense of software event and not physics event.
82 GAUDI

Interfaces
UserInterface

MessageSvc

JobOptionsSvc
IQueryOptions

IMessage

EventDataSvc

AlgorithmFactory
ICreate

DetectorDataSvc

IDataProvider

IDataProvider

IUserInterface

Controls

ApplicationMgr
IAppMgrUI

Controls

Controls

Algorithm

IAlgorithm

Algorithm
Algorithm

Controls

Controls

end-user

Controls

Controls

Illustration 16.1 The User Interface class diagram
GAUDI 83

User Interface

84 GAUDI

17

Message Service

The message service publishes messages originating from other software components. It is
the only component of the architecture that is allowed to transmit messages to the outside
world. The service filters messages according to their severity and dispatches them to
different output destinations.

17.1 Purpose and Functionality 86

17.2 Interfaces . 86

17.3 Dependencies . 86
GAUDI 85

Message Service

nts. It

ed
17.1 Purpose and Functionality

The message service publishes the messages originating from other software components. It is the
only component of the architecture that is allowed to transmit messages to the outside world. The
service filters messages according to their severity and dispatches them to different output
destinations (such as the process’ standard output and standard error streams, an error logging facility,
the detector control system etc.).

A given message may be generated several times. The message service can count messages of a given
type; it may filter out duplicate occurrences of a given message.

The type of filtering and the selection of output destinations is configurable via job options.

In the initial implementation there will be only two possible output destinations (standard output and
standard error)

17.2 Interfaces

The MessageSvc provides the following interfaces:

• IMessage interface. This interface is used by clients wishing to report a message to the
MessageSvc

• IMsgLogger interface. This interface is used to dispatch messages to message logging clie
will not be implemented in the initial version of the MessageSvc

• IsetProperty interface. The MessageSvc must implement this interface in order to get configur

17.3 Dependencies

• Message severity levels must be uniquely defined throughout the system

• Message types must be identified by a unique combination of facility code and error number

• Message sources (and destinations) must be uniquely identified.
86 GAUDI

Dependencies
MessageSvc

JobOptSvc
IQueryOptions

<<interface>>
IMessage

<<interface>>
IMsgLogger

<<interface>>
IsetProperty

Illustration 17.1 IThe MessageSvc class diagram
GAUDI 87

Message Service

88 GAUDI

18

Transient Event Data Model

In this chapter we introduce the LHCb specific data model we are considering for the
framework.....

18.1 Purpose and Functionality 90

18.2 Access and Interfaces 90

18.3 Dependencies . 90

18.4 EventData . 91

18.5 MonteCarloEvent . 92

18.6 RawEvent . 93
GAUDI 89

Transient Event Data Model

ion,

t. This
r STL
 mother

ectSet.

s, that

LHCb
g the

 Event
rvice,
them to
 back to

 the
Class
18.1 Purpose and Functionality

Transient event model (TEM) describes the representation of event data in the memory. The transient
representation should be optimized for execution efficiency and code readability. TEM will be used in
all LHCb data handling applications and should allow code reuse between them (simulation,
reconstruction, analysis, event display, trigger level 2 and 3, etc.). The application code should be
shielded from any kind of event data persistency.

TEM consists of class definitions and relationships between transient event objects. It contains the
following class collections:

• EventKernel (contains supporting classes, e.g. TimeStamp, Classification, ProcessingVers
RandomNumberSeed, ParticleID, CellId, TriggerPattern, etc.)

• EventData (identifiable classes, Event, MCEvent, RawEvent, ReconstructedEvent,
AnalysisEvent, ObjectSet, and closely related classes Run, EventTag)

• MonteCarloEvent (the Monte Carlo truth information)

• RawEvent (output from DAQ or Monte Carlo)

• ReconstructedEvent (output of reconstruction program, not competed yet)

• AnalysisEvent (analysis objects, not completed yet)

Basic container objects which contain event entities (e.g. digits, tracks) are of type ObjectSe
parametrized class implements one of the STL container classes vector<T> or list<T> (othe
container classes are not foreseen). As there is a need that the contained objects know which
container they belong to, it is necessary to re-implement the STL-like interface in the class Obj

Objects of most of the types from the high level event structure have to be identifiable. It mean
they have to inherit from class DataObject, which holds the Identifier.

The current TEM has been developed according the requirements known from current
simulation and analysis application (SICB). The complete SICB output can be stored usin
current TEM.

18.2 Access and Interfaces

Finding objects and registering newly created objects of TEM has always to go through the
Data Service (EventDataSvc). Algorithms can request objects of TEM from the Event Data Se
which makes them available (either they are already in the transient data store, or it requests
be loaded from Persistent Data Store, if available), i.e. it passes the reference of the objects
the algorithm.

18.3 Dependencies

The TEM is the basic building unit, used by other LHCb components. It will depend on
identification package. The TEM uses heavily the Standard Template Library (STL) and
Library for High Energy Physics (CLHEP).
90 GAUDI

EventData
18.4 EventData

RecEvent

DataObject

(from Identification)

detectorDataObjec
1..1

DetectorDataObject
(from Identification)

ObjectSet

container : Container

ObjectSet()
ObjectSet()
begin()
begin()
end()
end()
rbegin()
rbegin()
rend()
rend()
size()
max_size()
empty()
front()
front()
back()
back()
push_back()
pop_back()
swap()
insert()
insert()
erase()
erase()
operator<()
operator==()

1..1

processingVersion

1..1

MCEvent

pileUp : long = 0

subEvent 1..*

processingVersion

1..1

ProcessingVersion
(from EventKernel)

1..1

MCSubEvent

detectorCharacteristics : long = 0
primaryVertex : Point3D
weight : double = 0.

1..*

1..1

seed

1..1

Run

runType : long = 0
triggerType : long = 0
enabledTriggerMask : long = 0
enabledDetectorMask : long = 0
luminosity : double = 0.
fillNumber : long = 0
generatorType : long = 0

seed

1..1

RandomNumberSeed

seed1 : double = 0.
seed2 : double = 0.

(from EventKernel)

1..1

1..1

RawEvent

fromMC : bool = false
errorStatus : long = 0
highVoltageMask : long = 0

triggerPattern

1..1

AnalEvent

classification

1..1

triggerPattern

1..1

TriggerPattern
(from EventKernel)

1..1

classification

1..1

Classification

(from EventKernel)

1..1

tag

1..1

EventTag

1..1

1..1

event

1..1

Event

event : long = 0
run : long = 0

1..1

1..1

time
1..1

TimeStamp
(from EventKernel)

1..1
GAUDI 91

Transient Event Data Model

18.5 MonteCarloEvent

MCRichPhotodetectorHit
direction : Vector3D
absoluteMomentum : double = 0.
parentRadiator : long = 0

MCRichRadiatorHit
exit : Point3D
absoluteMomentum : double = 0.

daughterTrack

0..*

originVertex

1..1

decayVertex

1..1

motherTrack

0..1

MCVertex
position : Point3D
timeOfFlight : double = 0.

track

1..1

MCHit
entry : Point3D
depositedEnergy : double = 0.
timeOfFlight : double = 0.

track

1..*

MCParticleKinematics
particleID : ParticleID
fourMomentum : LorentzVector
flavourHistory : ParticleID

virtualMass()

0..*

1..11..1

0..1

1..1

MCCalorimeterHit
cellID : long = 0
energy : double = 0.

1..*

MCECalFacePlane
direction : Vector3D
unseenEnergyInCell : double = 0.

MCTrackingHit
exit : Point3D

MCBParticleKinematics
oscillationFlag : bool = false
92 GAUDI

RawEvent
18.6 RawEvent

VertexDigit MuonDigit TrackerDigit RichDigit CalorimeterDigit

rawSetHeader

1..1

RawSetHeader
RawSet

1..1

rawSetTrailer

1..1

RawSetTrailer

1..1

ObjectSet
(from Event Data)
GAUDI 93

Transient Event Data Model

94 GAUDI

	GAUDI
	Contents
	Introduction
	1.1 Purpose of the document
	1.2 Scope of the system
	1.3 Definitions, acronyms and abbreviations
	1.3.1 Definitions
	1.3.2 Acronyms

	1.4 References
	1.5 Overview of the document

	System Overview
	2.1 Computing tasks
	2.2 System Context
	2.3 Project Strategy

	System Design
	3.1 Major design criteria
	3.2 Object diagram
	3.3 Classification of classes and component model
	3.4 Transient Data Model
	3.5 Algorithms and the Transient Data Store
	3.6 Transient and Persistent data representations
	3.7 Links between event and detector data
	3.8 Data visualization
	3.9 Components
	3.10 Component Interactions
	3.10.1 Application initialization and basic event loop
	3.10.2 Retrieving and storing event objects
	3.10.3 Detector data synchronization

	3.11 Physical Design

	Application Manager
	4.1 Purpose and Functionality
	4.2 Interfaces
	4.3 Dependencies

	Algorithms
	5.1 Purpose and Functionality
	5.2 Interfaces
	5.3 Dependencies

	Data Converter
	6.1 Purpose and Functionality
	6.2 Interfaces
	6.3 Dependencies

	Job Options Service
	7.1 Purpose and Functionality
	7.2 Interfaces
	7.3 Dependencies

	Event Selector
	8.1 Purpose and Functionality
	8.2 Interfaces

	Transient Data Store
	9.1 Purpose and Functionality
	9.2 Interfaces
	9.3 Dependencies

	Event Data Service
	10.1 Purpose and Functionality
	10.2 Interfaces
	10.3 Dependencies

	Event Persistency Service
	11.1 Purpose and Functionality
	11.2 Interfaces
	11.3 Dependencies

	Detector Data Service
	12.1 Purpose and Functionality
	12.2 Interfaces
	12.3 Dependencies

	Detector Persistency Service
	13.1 Purpose and Functionality
	13.2 Interfaces
	13.3 Dependencies

	Histogram Data Service
	14.1 Purpose and Functionality
	14.2 Interfaces
	14.3 Dependencies

	Histogram Persistency Service
	15.1 Purpose and Functionality
	15.2 Interfaces
	15.3 Dependencies

	User Interface
	16.1 Purpose and Functionality
	16.2 Interfaces

	Message Service
	17.1 Purpose and Functionality
	17.2 Interfaces
	17.3 Dependencies

	Transient Event Data Model
	18.1 Purpose and Functionality
	18.2 Access and Interfaces
	18.3 Dependencies
	18.4 EventData
	18.5 MonteCarloEvent
	18.6 RawEvent

