

Simulation of GLAST

Alessandro de Angelis University of Udine and INFN Trieste

SLAC, February 21, 2002

Layout of the presentation

GLAST

- Characteristics and requirements and their impact on the simulation
- Structure of the GLAST software
 - and its impact on the simulation
- From GISMO to G4
- The G4-based simulation
 - Framework & data exchange
 - Geometry
 - Flux generation
 - Digitizations
 - Interaction with analysis & event display tools
- Physics validation
- Simulation gallery
- Next steps

• γ telescope on satellite for the range 20 MeV-300 GeV

- hybrid: tracker + calorimeter
- International collaboration NASA + US-Italy-France-Japan-Sweden
 - Broad experience in high-energy astrophysics and particle physics (science + instrumentation)
- Timescale: 2006-2010 (->2015)
- Wide range of physics objectives:
 - Gamma astrophysics
 - Fundamental physics

A HEP / astrophysics partnership

Calorimeter

GLAST: the tracker

Si strips + converter

- High signal/noise
- Rad-hard
- Low power
- 4x4 towers, of 37 cm × 37 cm of Si
 - 200 μm pitch
- 18 x, y planes per tower
 - 19 "tray" structures
- Electronics on the sides of trays
 - Minimize gap between towers
- Carbon-fiber walls to provide stiffness

A real event and a reconstructed γ conversion

GLAST: the calorimeter

CsI with diode readout

- Good E resolution
- High signal/noise
- Hodoscope: good position determination & leakage correction
- 4x4 arrays of CsI (Tl) crystals
- Thickness of 10 X₀
 - ~27x20 mm² transv size

Key science objectives

- Resolving the γ ray sky: AGN, diffuse emission & unidentified sources
- Particle acceleration mechanisms
- High energy behavior of γ ray bursts & transients
- Dark matter: probing WIMPs
- Solar flares
- New fundamental physics (the "unexpected")

Make happy both the HEP and the astrophysics community...

From S. Ritz 2001

Effective area

(total geometric acceptance) • (conversion probability) • (all detector and reconstruction efficiencies). Real rate of detecting a signal is (flux) • A_{eff}

Point Spread Function (PSF)

Angular resolution of instrument, after all detector and reconstruction algorithm effects.

Performance (compared to EGRET)

Quantity	GLAST	EGRET
Energy range	20 MeV- > 300 GeV	20 MeV- 30 GeV
Energy resolution	10 % (E>100 MeV)	10%
Peak Effective Area	> 8000 cm² (E>1 GeV)	1500 cm ²
Single photon angular resolution (68%, on-axis)	<3.5 deg (100 MeV) <0.15 deg (E>10 GeV)	5.8 deg (100 MeV)
*Field of view (FOV)	> 2 sr	0.5 sr
Time resolution	10 microseconds	0.1 milliseconds
Dead time	< 20 microsec/event	100 ms/event

Sensitivity compared to present & future detectors

- Complementary to ground-based
- GLAST is a key element of the γ astrophysics program
 - Large area
 - Low deadtime (20 μs)
 - Energy range to >300
 GeV
 - Large FOV

Photon Energy (GeV)

GLAST in summary...

- Huge FOV (~20% of sky)
- Broadband

(4 decades in energy, including unexplored region > 10 GeV)

Unprecedented PSF for gamma rays

(factor > 3 better than EGRET for E>1 GeV)

Large effective area (factor > 4 better than EGRET)

Results in factor > 30-100 improvement in sensitivity

No expendables: long mission without degradation

GLAST: signal and backgrounds

- Main signal: gamma rays
 - Detect conversion in the tracker
 - Typical cutoff ~ 10 keV
 - Shower in the calorimeter
 - Availability of a fast simulation
- Main background is charged cosmics
 - Veto with ACD
 - Possible classification using Multiple Scattering
 - Track signature
- S/B ratio is very low!
 - CR protons and He [(differential flux up to 5 order of magnitude than the high latitude diffuse γ radiation (at 30 GeV)]
 - CR electrons (up to 10³ times more abundant)
- Need for a very efficient Bckg Rejection up to $\sim 10^{-6}$
- Diffuse γ modelling needed for source detection

Simulation: physics requirements

- Accuracy in the simulation of EM interactions, down to low energies
 - Availability of a fast simulation in the calorimeter
- Reasonable simulation of hadronic interactions, rather fast
 - Availability of a fast simulation for hadrons
- Plus technical requirements: a well written code
 - Modularity
 - Good documentation
 - Maintenability

GLAST: structure of the offline sw

- Worldwide distributed sw dev't (weekly VRVS meetings for cohesion)
 - CVS for concurrent developing
 - CMT for configuration management
- Strictly OO code (mainly C++, possibly some part in Java in the future)
- Code subdivided in packages
 - Clear division of the responsibilities
 - Easier to manage
- Three official platforms (Windows 2000/NT, Linux, Sun)
- A lot of applications in event production & analysis
 - Flux generation
 - MC propagation
 - Digits from hits
 - Reconstruction
 - Analysis
 - Event display
 - Databasing, ...

how to deal with all of them in a structured way?

The GAUDI framework

- First GLAST simulation/analysis programs evidence the need for modularity, scalability, maintainability
- => a well structured (& well documented) framework: GAUDI
 - An application framework designed to facilitate event-oriented analysis, allowing modular development & deployment of processing algorithms
 - Open source project supported by (committed to) LHCb and ATLAS, hopefully guaranteeing long term support
- GLAST sim/rec/analysis is integrated in GAUDI

The MC simulation (G4 for example) is a transport algorithm in the framework, not a standalone application

- See tomorrow's talk
 - Connecting G4 to the GLAST infrastructure: geometry and GAUDI, by Riccardo Giannitrapani (Udine)

The simulation chain in GLAST

The beginning: GISMO

- The GLAST simulation has been done, from the beginning, using C++ and with OO technologies in mind
- GISMO was the choice
 - No other candidate at that moment (apart from standard Fortran MC)
 - GLAST core software group already experienced with GISMO

Characteristics of GISMO

- Takes care of tracking, Eloss etc.
- Secondary processes: EGS4, GHEISHA wrapped in

From GISMO to G4

- Why
 - GISMO is no more officially supported (and developed)
 - Physics needed some manpower
 - GEANT4 has arrived in the meanwhile
 - More flexible & maintainable
 - Well supported and used by several experiments
 - Continuously developed: 2 major releases each year + monthly internal tag (frequent bug fixes, new features, new examples)
 - Proved reliable for space applications (XRayTel and GammaRayTel)
- Groups involved (4-5 FTE)
 - Italy
 - Japan

Why G4 is the solution

Satisfies the technical requirements

- C++, Object Oriented
- Modular, scalable, extendable

Lot of care on physics processes

- A lot of physics processes available
 - Electromagnetic and hadronic processes in the same toolkit, no need for external packages
- Possibility to act on the physics behind in an easy way
- EM processes well simulated in the range of energies relevant for GLAST
- The physics is tested in a lot of collaborations: bugs will have short life

GammaRayTel

- A good workbench for GLAST needs and features
 - An advanced example of the G4 toolkit distribution
 - "Inspired" by GLAST and other similar experiments (AGILE)
 - One tower, with an ACD, a silicon strips tracker and a CsI calorimeter
 - The geometry is simplified wrt a GLAST tower
 - Example of use of Visualization, Analysis, Hits and Digits, UI and other features of G4
 - Is a standalone simulation (no GAUDI integration)

Playground for the GLAST G4 simulation

- Tested on data from a balloon flight (2001) and beamtest
- See tomorrow's talk
 - Study of the GLAST balloon prototype data based on Geant4 simulator, by Tsunefumi Mizuno (Hiroshima/SLAC)

Temporary structure

Implementation of the GLAST G4 simulation

- A GAUDI algorithm (G4Generator)
- Incoming flux: a GAUDI service FluxSvc (see later) independent of G4
- Geometry from XML file (see later) and a GAUDI service (DetModelSvc)
- Parameters of the simulation can be set a la GAUDI (via a jobOptions file)
- Interfaced with the GLAST own 3D representation and GUI
 - Ongoing project: integrate with other event display solutions (see later)
- Results (hits) saved in the Transient Data Store (work in progress)
 - Can then be used by digit algorithms and later by reconstruction and analysis in a G4 independent way

- G4 simply used for propagation; input and output externally dealt
 - We can use other MC algorithms (like GismoGenerator) in a complete interchangeable way

COMMENTS: Digits outside code Geometry outside code

Solution for geometry: XML persistency

- A specific DTD for the GLAST geometry (derived from the ATLAS one)
 - Geometry description + materials
 - Constants, Identifiers
- A C++ hierarchy of classes for the XML interface (detModel)
- A GAUDI service to wrap such a hierarchy (DetModelSvc)
- Many clients
 - Simulation
 - Reconstruction
 - Analysis
 - Event display
- Interfaces for
 - VRML output for the geometry
 - HTML constants documentation
 - GEANT4 and GISMO geometry description
 - ROOT
 - HepRep (work in progress)
- See tomorrow's talk
 - Connecting G4 to the GLAST infrastructure: geometry and GAUDI, by Riccardo Giannitrapani (Udine)

XML: VRML output

Cubes : 1135

XML: GEANT4 interface

Flux Generator (Flux Service)

Provides incoming particles for simulation

Flux Service:

- Selects from library (XML spec)
- Manages orbital parameters
- Returns particles generated by selected source, depending on the orbit

- Types that must be available:
 - Single γs for testing resolution
 - Primary and secondary Galactic Cosmic Rays (p,e)
 - Galactic gamma point sources
 - Galactic diffuse sources
 - Albedo gammas
 - Transient sources
- distributions of energy spectra
- angles with respect to:
 - local zenith
 - spacecraft
 - galactic or celestial coordinates
- Keep track of time
 - for measurement of rates
 - pile-up or deadtime correction
 - for turn-on of transients

Digitizations

Choice: parametrization to be interfaced to the G4 simulation

- Speed/accuracy constraints
- For an accurate digitization of the tracker signal
 - Electron motion in Si: simulation using HEED + GARFIELD/MAXWELL
 => charge sharing
 _____Contours of V
 ______Contours of V

Interaction with analysis and event display tools

- Analysis is decoupled from MC
 - Hits and digits in the GAUDI TDS from the G4Generator (or GismoGenerator) algorithm
 - Available for reconstruction and analysis algorithms
 - Analysis mainly in Root for now, but architecture open to other tools (IDL, JAS, other)
- Event display
 - A simple 3D representation with GUI is built in the GLAST software
 - Good experience with the Balloon event display made in Root
 - In the near future a complete support for HepRep data representation
 - Open to WIRED or other future HepRep clients
 - Events will be analyzed during MC run or later from the GAUDI permanent data store with a server-GAUDI client

Event display: first steps

The BALLOON ROOT Event Display

The in-house GLAST 3D

HepRep output from G4Generator in Wired

A top-view of an event: the detectors with energy released are displayed along with hits

A full tower (tracker + calorimeter) geometry

HepRep in GLAST

GEANT4 physics validation

- Many users => good debugging
- Quite a lot of manpower; would profit for more people concentrating on basic processes and simple geometries

Conclusions

(Taken from K. Amako, jun 2001)

- Study of electomagnetic processes
 - Large progress in understanding them since the beginning of the project.
 - However, there are still a lot of issues remain to be solved.
- Study of hadronic processes
 - Now we started to focus on this subject.
 - We expect it is much harder than the electromagnetic case.

Conclusions

(Taken from T. Kamae, nov 2001)

GEANT4 is as good as any existing EM simulator now.

Physics validation: the GLAST contribution

- Although the validation is done locally (Japan/Italy), many people involved belong to the G4 core
- Activity started in 2001
 - ~1.5 FTE taken from 6 people
 - "Low" level validation (comparison with G3, EGS4 & analytical formulae)
 - "High" level validation (comparison with balloon and test beam data; folded with digitizations)
 - Already obtained: positive feedback on the EM routines
- See tomorrow's talks:
 - Validation of the EM part of Geant4, by Tune Kamae (SLAC)
 - Study of the GLAST balloon prototype data based on Geant4 simulator, by Tsunefumi Mizuno (Hiroshima/SLAC)

- Italy
 - Bari (M. Brigida, N. Giglietto, F. Loparco, N. Mazziotta)
 - Perugia (C. Cecchi, C. Cestellini, P. Lubrano)
 - Padova (D. Bastieri)
 - Pisa (J. Cohen-Tanugi, L. Latronico, N. Omodei, G. Spandre)
 - Udine/Trieste (AdA, D. Favretto, M. Frailis, R. Giannitrapani, F. Longo)
- Japan
 - Hiroshima (Y. Fukazawa, T. Mizuno, H. Mizushima)
 - ISAS (M. Ozaki)
- USA
 - Goddard (H. Kelly)
 - SLAC (J. Bogart, R. Dubois, T. Kamae, H. Tajima, K. Young)
 - Washington State (T. Burnett)

CREDITS: S. Ritz, L. Rochester, K. Amako

Simulation gallery

WIRED

Cubes

Next steps

Technical

- G4 tuning
 - Choice of physics models, cutoffs & physical parameters
- Finalize the Transient Data Store MC data saving
- Finalize and test the Tracker Digits algorithms
- Test the HepRep framework
 - with existing clients (WIRED)
 - with new clients (ROOT, OpenGL, other)
- Physics
 - Conclude the validation of EM processes
 - Start the hadronic validation
 - Start the implementation of fast simulations