

Gamma-ray Large Area Space Telescope

Overview of Cookbook Examples

Francesco Longo University and INFN, Trieste, Italy <u>francesco.longo@ts.infn.it</u>

The Gamma Ray Large Area Space Telescope

Thanks to Chuck Patterson, Jim Chiang, Nicola Omodei, David Band, Masaharu Hirayama, Heather Kelly, Jürgen Knödlseder and many others

F.Longo

SLAC March 1st 2006

Science Tools

Use Cases of ST

GLAST LAT Project

Science Tools Workshop, June 12-14, 2002

Use case 1

- Contributed by D. Band, J. Chiang, S. D., P. Nolan, J. P. Norris
- Determine the average spectrum of 3C 273 for a particular one-month period
 - 1. Extract the gamma-ray data from the Level 1 database using U1, selecting a large enough region of the sky, and making standard cuts on zenith angle
 - 2. Generate the corresponding exposure using U3 after using U2 to extract the pointing/livetime history
 - 3. Define a model for the region of the sky using U7, which should be nearly automatic but allow for interactive editing; U7 uses U5 and A8
 - 4. Use U4 to generate maps of the region using the data and the model as a sanity check; display tool uses U8.
 - 5. Then iteratively use A1 to optimize the positions and fluxes of the point sources, pruning any that do not belong for this time range, adding any not already cataloged. A1 uses IRFs in D6
 - 6. With other parameters fixed, rerun A1 with various spectral models for 3C 273, or run A1 sucessively for narrow energy ranges to define the fluxes and uncertainties

SLAC March 1st 2006

F.Longo

User Workbook Science Tools Tutorials

Home: Software SciTools Setup S	Data Source election Analysis	GRB Analysis	Pulsar Analysis	Observation Simulation	SciTools References	Advanced Data Access
Data Extract Selection: LAT Data	Explore LAT Data					
	r I	2				
		N			Prir	nt Version
Extract LA	T Data					
	from the Cla	at Colon	co Cupp	art Cantar		vehalte and
erform further	selections.	st Scien	ce Supp	on center	(6550) M	vebsite and
synopsis:						
	s vou through	the ext	raction f	rom the G	SSC's dat	abases of the
nis thread lead	- /					

and make simple binning procedures to explore LAT data

Tutorial 1

At the end of the tutorial you should be able to generate CMAP and LC from gtbin and learn how to use gtselect and the data server at GSSC

User Workbook Science Tools Tutorials

	GLAST SAS User Workbook
SITE MAP DCII	
Home: Software Da SciTools Setup Sele	ta Source GRB Pulsar Observation SciTools Advanced Data
Source Likelihood Analysis: Tutorial	Binned Likelihood Analysis Source Likelihood Tutorial from Python Identification
	Print Version
Likelihood	Tutorial
A step-by-step ex	ample of an unbinned likelihood analysis.
Prerequisites	
• event data fi (sometimes re	le in FT1 format eferred to as the photon data file)
 spacecraft d (also referred) 	ata file in FT2 format to as the pointing and livetime history file)
See Extract L	AT Data.
SciTools Referen	ce Pages: If you want the SciTools Reference pages to open in a popup

These tutorials help you to analyze GLAST source data. In particular you are guided to use the Binned and Unbinned Likelihood analysis on a particular sky region both at command interface and with a Python UI

SLAC March 1st 2006

Tutorial 2

At the end of the tutorial you will be able to perform likelihood analysis (binned and unbinned) on specific region of the sky, making cnts and src maps, exposure maps ... you should be able to generate xml models of the sky regions

SLAC March 1st 2006

The Gamma Ray Large Area Space Telescope

User Workbook Science Tools Tutorials

1	GLAST SAS User Workbook
SITE MAP DCII	
Home: Software SciTools Setup	Data Source GRB Pulsar Observation SciTools <mark>Advanced Data</mark> Selection Analysis Analysis Analysis Simulation References
Source Likelih Analysis: Tutor	ood Binned Likelihood Analysis Source ial Likelihood Tutorial from Python Identification
	Delet Version
	Print Version
Source iden (gtsrcidTuto	rial)
A step-by-step exar	nple of LAT source identification.
Prerequisites	
• LAT point sou	rce catalogue file
SciTools Reference click on: Open Popu	e Pages: If you want the SciTools Reference pages to open in a popup window, p Reference Window.
Steps:	
1. <u>Get counterpa</u> <u>catalogue</u>	t needed for source identification.
2. <u>Run gtsrcid</u>	to do the job.
Condition Table Well Constitution	

This tutorials helps to identify a particular source on the sky with data from external catalogs

User Workbook Science Tools Tutorials

These tutorials let you to do a spectral analysis on GRB using GBM and LAT data. XSPEC is required.

Tutorial 3

The tutorial lets you to bin the GBM data and perform joint spectral analysis with GBM and LAT data.

SLAC March 1st 2006

F.Longo

4

User Workbook Science Tools Tutorials

A CONTRACT						
G	LAST SAS User Workbook					
SITE MAP DCII						
Home: Software Data SciTools Setup Selection	Source GRB Pulsar Observation SciTools Advanced Data Analysis Analysis Simulation References Advanced Access					
Pulsar Pulsar Anal. Arrival Analysis: Tutorial Corre	Time Period Pulse Phase Binary Orbital Ephemeris Ephemeris ction Search Calculation Phase Calculation Computation Utility Data File					
N	Print Version					
Pulsar Analysi	is Tutorial					
This tutorial illustrates	the flow of a basic pulsar analysis, using the following pulsar tools:					
Pulsar Tools:	Tool Tutorials:					
• gtbary	Arrival Time Correction					
 gtpsearch 	Period Search Tutorial					
 gtpphase 	Pulse Phase Calculation					
• gtophase	Binary Orbital Phase Calculation					
 gtephcomp 	Ephemeris Computation Utility					
 gtpulsardb 	Ephemeris Data File					

These complete tutorials guide you in the analysis of PSR data.

Tutorial 4

After the series of tutorials on PSR you will be able to find the PSR period having applied barycentric corrections and phase search using ephemerides calculation

SLAC March 1st 2006

F.Longo

User Workbook Science Tools Tutorials

This tutorial is useful to simulate new source models and test your ideas...

The Gamma Ray Large Area Space Telescope

Tutorial 5

In the Observation Simulator tutorials you will find how to simulate a realistic sky, defining simple source models. You will be directed also to the description of the complete modeling of PSR and GRB modeling available.

SLAC March 1st 2006

Conclusions

• Try to use the tutorials

GLAST LAT

- e.g. start from gtobssim to create your "own" sky and then reanalyze the DC2 sky on the same region
- They are proved to be effective in getting the users really involved in GLAST analysis
- Follow carefully tomorrow's tutorials on real DC2 sky

