Event Collections X

@ Issue: Event Data is spread across several files
@ Digi, Recon, MC, Merit, Svac, Cal Tuple, GCR Tuple
@ Some have simple NTuples, others have ROOT objects

@ Problems with this.
@ Synchronicity: need to make sure that files stay in sync
@ Requires ad-hoc solutions certain cases
@ Writing empty events into some files
@ Makes sparse collections impractical
@ Need to deep-copy all the data you want
@ File management:
@ Different files made by different tasks
@ Might not be stored in the same place
@ Pain for users, need to keep track of several files




Panacea ‘*@

@ Build system to collect parts of events into groups

@ Basically "pointer” or "meta-data” collection
@ Store a TTree with just enough information to find the various
parts of the event
@ Define event components

@ A component is one entry in a TTree that contains data for a
given event

@ Build a event by having a bunch of pointers to components




l i

Event Component Pointer

@ Minimum data to find an event component
@ Which file
@ Which tree in file
@ Which entry in tree

@ How to specify that information
@ Tn ROOT Enftry is just Longb64_t {64 bit signed integer)
® File/ Tree is more complicated
@ Easiest is strings for FileName, TreeName
@ Several Improvements on this possible




Specifying File/ Tree %

@ Improvement: use external table for File/Tree names
@ Entry in n-tuple column is just index into table
@ Maybe Int_t -> 32 bit signed integer or even smaller
@ Entries in table are more complicated and flexible
@ Physical File Name/ Tree Name
@ Logical File Name (in XROOTD) / Tree Name
@ Relative File Name

@ Assumes that all files in same area, allows them to be
moved as a group




Reading Collections a

@ Easiest solution: provide a class to open/ access the
component frees
@ reader->getEvent(Longb64_t iEvt, vector<TTree*>& comps);

@ Reads the correct events from the component trees,
puts them onto the vector "comps”

@ Can add some control of what does/ doesn't get read
® reader->readBranch(const char* tree, const char® branch)

@ Fancier solution: make sub-classes of ROOT stuff to
handle our trees
@ GTree : public TTree
@ GTreeReader : public TTreeReader
@ Might only need one, not both
@ GTree->LoadTree(Longb64_t) -> also loads component trees

@ Use FriendTree stuff in ROOT to allow plotting data from
different components against each other




).¢

Some Bonuses %

@ Sparse Collections

@ Can make collections containing only events that pass certain
cuts.

@ Useful for calibrations

@ Avoids data duplication, actual data off in XROOTD, only
have pointers to the event components

@ Can make 'deep-copies’ as needed when you want to
transfer data to outside sources
@ Replaceable components

@ When re-running part of processing just generate new index
files that point to new version of processed data

@ Point users at the new index files

@ Less headache for users




l i

Working Example

@ This has all been implemented for BaBar
@ Actually, BaBar model much more complicated

@ Functionality discussed here is in:
@ KanEvent/KanHeaderTree
@ Inherits from TTree
@ Overrides TTree::Fill() and TTree::LoadTree()
@ Basic representation of Event component is
@ pair<TTree* TFile*> FileAndTree
@ Int_t index




	Event Collections
	Panacea
	Event Component Pointer
	Specifying File/ Tree
	Reading Collections
	Some Bonuses
	Working Example

