

The GLAST experiment at SLAC
DataFlow Public Interface (DFI)
GLAST Electronics group

Users Manual

Document Version: 0.5
Document Issue: 1
Document Edition: English
Document Status: not for public release
Document ID: LAT-TD-07689
Document Date: November 24, 2005

Stanford Linear Accelerator Center (SLAC)
2575 Sandhill Road

Menlo Park California, 94025 USA

DataFlow Public Interface (DFI) Users Manual
November 24, 2005 Version/Issue: 0.5/1
page 2 not for public release

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

DataFlow Public Interface (DFI) Users Manual
Abstract Version/Issue: 0.5/1
Abstract

To do so, the application codes against a set of C++ classes called the DataFlow Interface. (DFI)
A complete description and explanation of these classes is one of the principal goals of this
document.

Intended audience

While, a design proposal, this document is intended principally as a guide for the users of the
DFI. These include:

• Testers of Flight Software

• Developers of Flight Software

• Developers of I&T (Integration and Test) based systems

Conventions used in this document

Certain special typographical conventions are used in this document. They are documented
here for the convenience of the reader:

• Field names are shown in bold and italics (e.g., respond or parity).

• Acronyms are shown in small caps (e.g., SLAC or TEM).

• Hardware signal or register names are shown in Courier bold (e.g., RIGHT_FIRST or
LAYER_MASK_1)

References

1 1553 Product Handbook, United Technologies Microelectronics Center Inc., 1992.

2 CCSDS Package User Manual, LAT Flight Software User Manual.

3 CTDB 1553 Drivers, LAT Flight Software User Manual.
not for public release page 3

DataFlow Public Interface (DFI) Users Manual
References Version/Issue: 0.5/1
4 EGSE Used to Test GASU, LAT-TD05787.

5 Enhanced Summit Family Product Handbook, UTMC Microelectronics Systems Inc.,
October 1999.

6 GLAST 1553 Bus Protocol Interface Control Document, Spectrum Astro, Inc.

7 GLAST LAT Instrument – Spacecraft Interface Requirements Document, 433-IRD-0001
Revision B, NASA Goddard Space Flight Center, April 2002.

8 GLAST LAT to Spacecraft Interface Control Document, Spectrum Astro, Inc.,
February 2003.

9 GLAST Spacecraft Interface Board Hardware Specification, LAT Hardware
Specification Document.

10 LTX User Manual, V1-1-0, LAT FSW User Manual, August 2003.

11 Military Standard 1553B Notice 2, United States Department of Defence,
September 1986.

12 Military Standard 1553B, Aircraft Internal Time Division Command/Response
Multiplex Data Bus, United States Department of Defence, September 1978.

13 MSG User Manual, LAT Flight Software User Manual.

14 PBS Package Documentation, LAT Flight Software Code Documentation.

15 PMC-1553 Reference Manual, Rev 1.2, Alphi Technology Corporation, June 1998.

16 Recommendation for Space Data System Standards, Advanced Orbiting Systems,
Networks and Data Links: Architectural Specification, Blue Book 701.0-B-3,
Consultative Committee for Space Data Systems, June 2001.

17 Recommendation for Space Data System Standards, Telecommand Part 3, Data
Management Service Architectural Specification, Blue Book 203.0-B-1, Consultative
Committee for Space Data Systems, January 1987.

18 Telecommand and Telemetry Formats, LAT-TD-02659.

19 “GASU Based Teststands - A hardware and software Primer”, Michael Huffer,
LAT-TD-03664.

20 Symmetricom TTM635/637VME Time and Frequency Processor, revision B Users
Guide, 8500-0138 February, 2004

21 LAT Flight Software, CMX Manual, version V2-2-3, A. P. Waite, updated 30,
November 2004

22 “The GLT Electronics Module- Programming ICD specification”, Michael Huffer,
LAT-TD-01545.

23 See the LAT Flight Software, web-site for the traveller documentation for LPA
(currently undefined)

24 See the LAT Flight Software, web-site for the traveller documentation for
datagrams (currently undefined)

25 See the LAT Flight Software, web-site for the traveller documentation for LCI
(currently under project APP, package LCI)
page 4 not for public release

DataFlow Public Interface (DFI) Users Manual
References Version/Issue: 0.5/1
26 “The EBM Electronics Module- Programming ICD specification”, Michael Huffer,
LAT-TD-01546.

27 “The Virtual Spacecraft (VSC) Users Manual”, Michael Huffer, LAT-TD-05601.

28 “Online System Science Data Format (LDF)”, Ric Claus, LAT-TD-07066 (see the
I&T online web site documentation for the latest version of this document)

Note: For additional resources, refer to the LAT Electronics, DAQ Critical Design
Requirements List. On the LAT Electronics, Data Acquisition & Instrument Flight Software
page (http://www-glast.slac.stanford.edu/Elec_DAQ/Elec_DAQ_home.htm), click
Hardware and then click List of all documents.
not for public release page 5

http://www-glast.slac.stanford.edu/Elec_DAQ/Elec_DAQ_home.htm

DataFlow Public Interface (DFI) Users Manual
Document Control Sheet Version/Issue: 0.5/1
Document Control Sheet

Table 1 Document Control Sheet

Document Title: DataFlow Public Interface (DFI) Users Manual

Version: 0.5

Issue: 1

Edition: English

ID: LAT-TD-07689

Status: not for public release

Created: February 9, 2002

Date: November 24, 2005

Access: V:\GLAST\Electronics\Design Documents\DFI\0.5\frontmatter.fm

Keywords: GASU Based Teststands

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V2.0 - 5 July 1999

Content
Template:

-- Version: --

Authorship Coordinator: Michael Huffer

Written by: Michael Huffer

Table 2 Approval sheet

Name Title Signature Date

Gunther Haller LAT CHIEF ELECTRONICS ENGINEER

JJ Russell FLIGHT SOFTWARE LEAD
page 6 not for public release

DataFlow Public Interface (DFI) Users Manual
Document Status Sheet Version/Issue: 0.5/1
Document Status Sheet

Table 3 Document Status Sheet

Title: DataFlow Public Interface (DFI) Users Manual

ID: LAT-TD-07689

Version Issue Date Reason for change

0.2 1 11/10/2005 First internal release

0.4 1 11/10/2005 First internal release of calibration definitions. Includes
updates as reflected from Ric’s and JJ’s comments.

0.5 1 11/24/2005 Includes updates as reflected from Eric’s, James’s, Ric’s and JJ’s
comments. Includes first stab at making the configuration and
results of LPA’s event handlers public.
not for public release page 7

DataFlow Public Interface (DFI) Users Manual
Document Status Sheet Version/Issue: 0.5/1
page 8 not for public release

DataFlow Public Interface (DFI) Users Manual
Table of Contents Version/Issue: 0.5/1
Table of Contents

Abstract . 3

Intended audience . . 3

Conventions used in this document . . 3

References . 3

Document Control Sheet . . 6

Document Status Sheet . 7

List of Tables . 13

List of Figures . 15
List of Listings . 17

Chapter 1
Introduction . 19

Chapter 2
The DataFlow Interface . 21

2.1 Overview . 21
2.2 Name space - Dfi . 22
2.3 Datagram . 22

2.3.1 Constructor synopsis . 22
2.3.2 Member synopsis . 22

2.4 Datagram Parser . 23
2.4.1 Constructor synopsis . 24
2.4.2 Member synopsis . 24
not for public release page 9

DataFlow Public Interface (DFI) Users Manual
Table of Contents Version/Issue: 0.5/1
2.5 Exceptions . 26
2.5.1 Invalid Datagram Type 26
2.5.2 Invalid Datagram Structure 26

Chapter 3
The Event support package . 27

3.1 Overview . 27
3.2 Name space - DfiEvent . 28
3.3 Event Parser . 28

3.3.1 Constructor synopsis . 29
3.3.2 Member synopsis . 29

3.4 Context . 29
3.4.1 Constructor synopsis . 30
3.4.2 Member synopsis . 30

3.5 Run Information . 31
3.5.1 Constructor synopsis . 31
3.5.2 Member synopsis . 32

3.6 Open Information . 32
3.6.1 Constructor synopsis . 33
3.6.2 Member synopsis . 33

3.7 Close Information . 35
3.7.1 Constructor synopsis . 36
3.7.2 Member synopsis . 36

3.8 Scalers . 37
3.8.1 Constructor synopsis . 37
3.8.2 Member synopsis . 37

3.9 Time Tone . 38
3.9.1 Constructor synopsis . 39
3.9.2 Member synopsis . 39

3.10 Meta Event . 40
3.10.1 Constructor synopsis . 41
3.10.2 Member synopsis . 41

3.11 GEM Time . 41
3.11.1 Constructor synopsis . 42
3.11.2 Member synopsis . 42

3.12 Exceptions . 42
3.12.1 Decompression not supported 42

Chapter 4
The LPA support package . 43

4.1 Overview . 43
4.2 Name space - DfiLpa . 44
4.3 Event Parser . 44
page 10 not for public release

DataFlow Public Interface (DFI) Users Manual
Table of Contents Version/Issue: 0.5/1
4.3.1 Constructor synopsis . 44
4.3.2 Member synopsis . 45

4.4 Meta Event . 45
4.4.1 Constructor synopsis . 46
4.4.2 Member synopsis . 46

4.5 Event . 46
4.5.1 Constructor synopsis . 47
4.5.2 Member synopsis . 47

4.6 Event Handlers . 47
4.6.1 Constructor synopsis . 48
4.6.2 Member synopsis . 48

4.7 Gamma Handler . 48
4.7.1 Constructor synopsis . 49
4.7.2 Member synopsis . 49

4.8 Event Handler . 49
4.8.1 Constructor synopsis . 50
4.8.2 Member synopsis . 50

4.9 Exceptions . 50
4.9.1 Decompression Failed . 50

Chapter 5
LCI support . 51

5.1 Overview . 51
5.2 Name space - DfiLci . 52
5.3 Constants . 52
5.4 Meta Event . 52

5.4.1 Constructor synopsis . 53
5.4.2 Member synopsis . 53

5.5 Event . 54
5.5.1 Constructor synopsis . 55
5.5.2 Member synopsis . 55

5.6 Channel . 55
5.6.1 Constructor synopsis . 56
5.6.2 Member synopsis . 56

Chapter 6
ACD calibration support . 57

6.1 Overview . 57
6.2 ACD Parser . 57

6.2.1 Constructor synopsis . 58
6.2.2 Member synopsis . 58
not for public release page 11

DataFlow Public Interface (DFI) Users Manual
Table of Contents Version/Issue: 0.5/1
6.3 ACD Meta Event . 59
6.3.1 Constructor synopsis . 59
6.3.2 Member synopsis . 60

6.4 ACD Trigger Discriminators . 60
6.4.1 Constructor synopsis . 61
6.4.2 Member synopsis . 61

Chapter 7
Tracker calibration support . 63

7.1 Overview . 63
7.2 Tracker Parser . 63

7.2.1 Constructor synopsis . 64
7.2.2 Member synopsis . 64

7.3 Tracker Meta Event . 65
7.3.1 Constructor synopsis . 65
7.3.2 Member synopsis . 66

Chapter 8
Calorimeter calibration support . 67

8.1 Overview . 67
8.2 Calorimeter Parser . 67

8.2.1 Constructor synopsis . 68
8.2.2 Member synopsis . 68

8.3 Calorimeter Meta Event . 69
8.3.1 Constructor synopsis . 70
8.3.2 Member synopsis . 70

8.4 Calorimeter Trigger Discriminators 71
8.4.1 Constructor synopsis . 71
8.4.2 Member synopsis . 72

8.5 Exceptions . 72
8.5.1 Decompression Failed . 72
page 12 not for public release

DataFlow Public Interface (DFI) Users Manual
List of Tables Version/Issue: 0.5/1
List of Tables

Table 1 p. 6 Document Control Sheet

Table 2 p. 6 Approval sheet

Table 3 p. 7 Document Status Sheet

Table 4 p. 32 Enumeration of platform identifiers for the RunInfo class

Table 5 p. 32 Enumeration of origin identifiers for the Run class

Table 6 p. 34 Enumeration of crate identifiers for the OpenInfo class

Table 7 p. 34 Enumeration of mode identifiers for the OpenInfo class

Table 8 p. 34 Enumeration of reason identifiers for the OpenInfo class

Table 9 p. 35 Enumeration of requesters for the OpenInfo class

Table 10 p. 36 Enumeration of reason identifiers for the CloseInfo class

Table 11 p. 36 Enumeration of requesters for the CloseInfo class

Table 12 p. 60 Type definition for the channel class when used in an ACD calibration.

Table 13 p. 66 Type definition for the channel class when used in an tracker calibration.

Table 14 p. 71 Type definition for the channel class when used in a calorimeter calibration.
not for public release page 13

DataFlow Public Interface (DFI) Users Manual
List of Tables Version/Issue: 0.5/1
page 14 not for public release

DataFlow Public Interface (DFI) Users Manual
List of Figures Version/Issue: 0.5/1
List of Figures

Figure 1 p. 21 Class dependencies for the datagram support package

Figure 2 p. 23 Abstract structure of a datagram

Figure 3 p. 28 Class dependencies for the Event support package

Figure 4 p. 43 Class dependencies for the LPA support package

Figure 5 p. 52 Class dependencies for the LCI support package
not for public release page 15

DataFlow Public Interface (DFI) Users Manual
List of Figures Version/Issue: 0.5/1
page 16 not for public release

DataFlow Public Interface (DFI) Users Manual
List of Listings Version/Issue: 0.5/1
List of Listings

Listing 1 p. 22 Class definition for Datagram

Listing 2 p. 24 Class definition for DatagramParser

Listing 3 p. 29 Class definition for an event Parser

Listing 4 p. 30 Class definition for Context

Listing 5 p. 31 Class definition for RunInfo

Listing 6 p. 33 Class definition for OpenInfo

Listing 7 p. 35 Class definition for CloseInfo

Listing 8 p. 37 Class definition for Scalers

Listing 9 p. 39 Class definition for TimeTone

Listing 10 p. 40 Class definition for MetaEvent

Listing 11 p. 42 Class definition for GemTime

Listing 12 p. 44 Class definition for LPA EventParser

Listing 13 p. 46 Class definition for LPA MetaEvent

Listing 14 p. 47 Class definition for LPA Event

Listing 15 p. 48 Class definition for EventHandlers

Listing 16 p. 49 Class definition for Gamma

Listing 17 p. 49 Class definition for EventHandler

Listing 18 p. 53 Class definition for LCI MetaEvent

Listing 19 p. 55 Class definition for LCI Event

Listing 20 p. 55 Class definition for Channel

Listing 21 p. 58 Class definition for AcdParser

Listing 22 p. 59 Class definition for AcdMetaEvent

Listing 23 p. 61 Class definition for AcdTrigger

Listing 24 p. 64 Class definition for TkrParser
not for public release page 17

DataFlow Public Interface (DFI) Users Manual
List of Listings Version/Issue: 0.5/1
Listing 25 p. 65 Class definition for TkrMetaEvent

Listing 26 p. 68 Class definition for CalParser

Listing 27 p. 69 Class definition for CalMetaEvent

Listing 28 p. 71 Class definition for CalTrigger
page 18 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 1 Introduction Version/Issue: 0.5/1
Chapter 1

Introduction

Examples will go here!
not for public release page 19

DataFlow Public Interface (DFI) Users Manual
Chapter 1 Introduction Version/Issue: 0.5/1
page 20 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 2 The DataFlow Interface Version/Issue: 0.5/1
Chapter 2

The DataFlow Interface

2.1 Overview

By LAT convention, information passed on the science stream is always organized in units of
datagrams (see [23]). A Datagram is the common structure used to encapsulate all science data
created and transmitted by Flight Software (FSW). The invariant contents of a datagram are
encapsulated in the Datagram class described in Section 2.3. The function of this package is
to support the parsing and processing of the information contained within a datagram. Parsing
is the act of iterating over the logical structure of a datagram. At each logical boundary, the
information contained at that boundary must be communicated to the user for application
specific processing. The classes used to support parsing are all based on the DatagramParser
class described in Section 2.4.

The relationship between the classes of this package is illustrated in Figure 1:

Figure 1 Class dependencies for the datagram support package

Datagram

DatagramParser
not for public release page 21

DataFlow Public Interface (DFI) Users Manual
Chapter 2 The DataFlow Interface Version/Issue: 0.5/1
2.2 Name space - Dfi

2.3 Datagram

This class specifies the data structure assembled from arriving CCSDS science packets (see
[23]). In addition to the member functions described below, the contents of datagram may be
accessed through the datagram parser described in Section 2.4.

The definition for this class is contained in Listing 1:

2.3.1 Constructor synopsis

Datagram From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

2.3.2 Member synopsis

length This function returns the total length of the datagram in bytes. The member
function has no arguments and throws no exceptions.

typeId Returns the datagram identifier. This function has no arguments and throws no
exceptions.

version Returns the datagram version number. This function has no arguments and
throws no exceptions.

Listing 1 Class definition for Datagram

1: class Datagram {
2: public:
3: Datagram(const Root&);
4: public:
5: ~Datagram();
6: public:
7: unsigned length() const;
8: unsigned typeId() const;
9: unsigned version() const;

10: };
page 22 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 2 The DataFlow Interface Version/Issue: 0.5/1
2.4 Datagram Parser

This class iterates over the contents of a specified datagram (see Section 2.3). Logically, the
contents of datagram are structured as a three level hierarchy of root, contribution, and record as
illustrated in Figure 2:

Each node, at each level, contains both a fixed (the “header”) and variable amount of
information. A datagram:

— contains always one and only one root

— may contain one or more contributions.

— contribution may contain one or more records.

Both the shape of each node (its size, contents and structure) and the number of nodes are
determined by the type identifier of the datagram (see Section 2.3). Datagrams are always a
multiple of 32-bit words and are always 32-bit word aligned.

For each level of the hierarchy the datagram parser provides a corresponding interface
method. Derived classes are expected to provide an implementation for each one of these
methods. The parser implements a depth first traversal of the hierarchy, triggering the
appropriate method as it reaches each node. At any point in the traversal process parsing may
be aborted by an appropriate implementation of any one of the these methods. Note that these
methods are protected, the derived class is expected to hide these methods and re-export
datagram contents in a fashion appropriate to datagram type. For example, see the
EventParser described in Section 4.3. The parser initiates its traversal by calling its parse
method. The argument to this method is the datagram to be parsed.

The definition for this class is contained in Listing 2:

Figure 2 Abstract structure of a datagram

Root

Contribution

Record
not for public release page 23

DataFlow Public Interface (DFI) Users Manual
Chapter 2 The DataFlow Interface Version/Issue: 0.5/1
2.4.1 Constructor synopsis

DatagramParser The constructor’s argument is a value corresponding to a datagram’s type
identifier (see Section 2.3). This value specifies which type of datagrams can be
parsed (see the parse method described below). The constructor throws no
exceptions.

2.4.2 Member synopsis

parse This method is called to initiate datagram parsing. The function has a single
argument which is a reference to an object specifying the datagram to be parsed.
This function compares the type identifier of that datagram to the value expected
by the parser (see the constructor). If they do not agree, the exception described in
Section 2.5.1 is thrown. If the structure of the datagram is not self-consistent, the
exception described in Section 2.5.2 is thrown. This function returns no value.

typeId This method returns a value corresponding to a type identifier. This value
specifies which type of datagrams may be parsed (see the parse method
described above). This value was passed as an argument to the constructor. The
function has no arguments and throws no exceptions.

_process(const Root&) This method is called once for each datagram. The method was
triggered by the parse method (see above). This function is pure virtual and,
therefore, its implementation will be provided by the sub-class. The argument is a
reference to an object which describes the root. Note that the argument referenced
by this method (and any objects it may reference) is ephemeral. When the method
returns these objects are no longer accessible. Consequently, any information in
these objects which the user finds necessary to persist across calls to this method

Listing 2 Class definition for DatagramParser

1: class DatagramParser {
2: public:
3: DatagramParser(unsigned typeId);
4: public:
5: virtual ~DatagramParser();
6: public:
7: void parse(const Datagram&) const;
8: public:
9: unsigned typeId() const;

10: private:
11: virtual bool _process(const Root&) = 0;
12: virtual bool _process(const Contribution&) = 0;
13: virtual bool _process(const Record&) = 0;
14: virtual bool _process() = 0;
15: };
page 24 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 2 The DataFlow Interface Version/Issue: 0.5/1
must be copied. This function returns a boolean specifying whether or not to
abort parsing. If parsing is aborted control is immediately returned to the caller of
the parse method. If the function returns TRUE, parsing continues. If the function
returns FALSE, parsing aborts. The function throws no exceptions.

_process(const Contribution&) This method is called once for each contribution in the
parsed datagram. Contributions will be parsed in the order in which they occur in
the datagram. Parsing is depth first: if the contribution contains one or more
records, they will be processed before progressing to the next contribution. The
method was triggered by the parse method (see above). This function is pure
virtual and, therefore, its implementation will be provided by the sub-class. The
argument is a reference to an object which describes the contribution. Note that
the argument referenced by this method (and any objects it may reference) is
ephemeral. When the method returns these objects are no longer accessible.
Consequently, any information in these objects which the user finds necessary to
persist across calls to this method must be copied. This function returns a boolean
specifying whether or not to abort parsing. If parsing is aborted control is
immediately returned to the caller of the parse method. If the function returns
TRUE, parsing continues. If the function returns FALSE, parsing aborts. The
function throws no exceptions.

_process(const Record&) This method is called once for each record of each contribution
in the parsed datagram. Records will be parsed in the order in which they occur
in the datagram. This function is pure virtual and, therefore, its implementation
will be provided by the sub-class. The argument is a reference to an object which
describes the record. Note that the argument referenced by this method (and any
objects it may reference) is ephemeral. When the method returns these objects are
no longer accessible. Consequently, any information in these objects which the
user finds necessary to persist across calls to this method must be copied. This
function returns a boolean specifying whether or not to abort parsing. If parsing
is aborted control is immediately returned to the caller of the parse method. If
the function returns TRUE, parsing continues. If the function returns FALSE,
parsing aborts. The function throws no exceptions.

_process() This method is called once for each datagram. The method was triggered by the
parse method (see above). This function is pure virtual and, therefore, its
implementation will be provided by the sub-class. It will be called immediately
before control is returned to the caller of the parse method and after the last
contribution of the datagram has been parsed. This function returns a boolean
specifying whether or not to abort parsing. If parsing is aborted control is
immediately returned to the caller of the parse method. If the function returns
TRUE, parsing continues. Note, that because this is the last method triggered, the
returned value actually has no practical effect. If the function returns FALSE,
parsing aborts. The function has no arguments and throws no exceptions.
not for public release page 25

DataFlow Public Interface (DFI) Users Manual
Chapter 2 The DataFlow Interface Version/Issue: 0.5/1
2.5 Exceptions

2.5.1 Invalid Datagram Type

to be written.

2.5.2 Invalid Datagram Structure

to be written.
page 26 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
Chapter 3

The Event support package

3.1 Overview

While FSW transmits an arbitrary number of different types of datagrams on the science
stream, many of these types share the common characteristic of being event oriented. This
particular package captures those characteristics common to all event based datagrams. These
characteristics are:

— They are produced in the context of a Run. While an accurate definition and
description of a run is beyond the scope of this document, for the purposes of this
document, a run may thought of as a time interval over which the state of FSW
remains relatively constant. The specification of a run is encapsulated in the
RunInfo class described in Section 3.5.

— They contain one or more events. An event has both meta and detector based
information. For example, an event’s time is considered one type of meta information.
Meta information is encapsulated in the class MetaEvent (described in Section 3.4).

— They update run based statistics. For example, livetime and elapsed time are two
statistics tallied over the lifetime of a run. Statistics are accumulated into scalers, one
for each individual statistic. The set of scalers are encapsulated in the Scalers class
described in Section 3.8.

— They have a well defined structure at both their beginning and end. The prefix
information is called a datagram’s Open context and the suffix information, the
datagram’s Close context. This information is encapsulated in respectively, the
OpenInfo (see Section 3.6) and CloseInfo classes (see Section 3.7).

The classes of this package stand in isolation and are only useful in the context of a facility
which generates event oriented datagrams. At this point there are two:

— the LAT Physics Analysis facility (LPA) discussed in chapter 4.

— the LAT Charge Injection facility (LCI) discussed in chapter 5.

The relationship between the classes of this package is illustrated in Figure 3:
not for public release page 27

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.2 Name space - DfiEvent

3.3 Event Parser

The principal function of this class is to iterate over the events contained within an event
oriented datagram. This class is never used in isolation, but is instead sub-classed in order to
parse a specific kind of event datagram. See, for example, the LPA parser described in
Section 4.3.

Any event parsed in such a datagram has two components: meta information about the event
and the event data itself. Typically, this data is transmitted, by FSW, to the ground compressed.
Depending on how the data were compressed, decompression of an event requires a varying
amount of external resources be available to the user. For example, LPA events at their
maximum compression level require pedestal knowledge. This information is only present in
a FSW database (see xxx) and therefore, to decompress those events requires a connection to
that database. In many other cases, the event’s meta information is alone sufficient to
decompress the event. In short, higher levels of compression require more resources to
decompress and these resources may or may not be available to the user. An argument to the
parser’s constructor specifies to the parser how many resources the user wishes to bring to
bear when decompressing event data. This argument will then be used by the parser to garner

Figure 3 Class dependencies for the Event support package

GemTimeScalers

Context

RunInfo CloseInfoOpenInfo TimeTone

Parser

Dfi::DatagramParser

MetaEvent
page 28 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
those resources. For example, to form a connection to a FSW database. If the argument
specifies more resources then the parser is able to garner, an exception is declared.

In order to maximize the portability of the user’s parser, it behoves the user to request only what
resources they may need.

The definition for this class is contained in Listing 3:

3.3.1 Constructor synopsis

Parser The constructor’s argument is a enumeration specifying the maximum level of
event data decompression supported by the parser. See Section 3.3 for
information on how this argument is used. Note to myself, Amedeo, and others:
I’m waiting for JJ to specify the various values of this enumeration. Until then,
take the value(s) with a grain of salt. If the parser cannot support the specified
decompression level the constructor will throw the exception specified in
Section 3.12.1.

3.3.2 Member synopsis

level This function returns an enumeration which specifies the amount of resources
supported for event decompression by the parser. This value was specified as an
argument to the constructor (see above). This function has no arguments and
throws no exceptions.

3.4 Context

This class encapsulates the information available when processing a datagram. Processing an
datagram is always accomplished in the context of an event parser (see for example
Section 3.3). Therefore, the contents of this object will always reflect their value corresponding

Listing 3 Class definition for an event Parser

1: class Parser : public Dfi::DatagramParser {
2: public:
3: enum Decompression {None};
4: public:
5: Parser(Decompression);
6: public:
7: virtual ~Parser();
8: public:
9: Decompression level() const;

10: };
not for public release page 29

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
to where within a datagram the parser is, at any time, pointing. In turn this implies that some,
(but not necessarily all) the values contained by this object will vary as a function of event (see
Section 3.10).

The definition for this class is contained in Listing 4:

3.4.1 Constructor synopsis

Context From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within a
datagram, the meta data necessary to construct an object of this class. The
constructor throws no exceptions.

3.4.2 Member synopsis

run Returns a reference to an object containing the datagram’s run information (see
Section 3.5). This function has no arguments and throws no exceptions.

open Returns a reference to an object containing the datagram’s open information (see
Section 3.6). This function has no arguments and throws no exceptions.

close Returns a reference to an object containing the datagram’s close information (see
Section 3.7). This function has no arguments and throws no exceptions.

scalers Returns a reference to an object containing a run’s scalers (see Section 3.8). This
function has no arguments and throws no exceptions.

current This method returns a reference to an object which specifies the most recently
arrived time-tone (see Section 3.9). This object (and the object returned by the
method below) are used to both convert and correct LAT relative time to absolute
time. This function has no arguments and throws no exceptions.

Listing 4 Class definition for Context

1: class Context{
2: public:
3: Context(const _QSE_ctx*);
4: public:
5: ~Context();
6: public:
7: const RunInfo& run() const;
8: const OpenInfo& open() const;
9: const CloseInfo& close() const;

10: const Scalers& scalers() const;
11: const TimeTone& current() const;
12: const TimeTone& previous() const;
13: };
page 30 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
previous This method returns a reference to an object which specifies the previous
time-tone (see Section 3.9). In other words, if the time-tone returned by the
current method (see above) was delivered at time n, this method returns the
time-tone at n - 1. This object (and the object returned by the method above) are
used to both convert and correct LAT relative time to absolute time. This function
has no arguments and throws no exceptions.

3.5 Run Information

This class encapsulates the description of a FSW run (see Section 3.1). This description will stay
constant over the lifetime of a run (see section 3.6 and 3.7 for information on how to determine
when the run changes). The definition for this class is contained in Listing 5:

3.5.1 Constructor synopsis

RunInfo From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within a
datagram, the meta data necessary to construct an object of this class. The
constructor throws no exceptions.

Listing 5 Class definition for RunInfo

1: class RunInfo {
2: public:
3: RunInfo(const _QSE_ctx*);
4: public:
5: ~RunInfo();
6: public:
7: enum Platform {Lat, Testbed, Host};
8: Platform platform() const;
9: public:

10: enum DataOrigin {Orbit, MonteCarlo, Ground};
11: DataOrigin origin() const;
12: public:
13: unsigned id() const;
14: unsigned startedAt() const;
15: };
not for public release page 31

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.5.2 Member synopsis

platform This function returns an enumeration which specifies the system under which the
datagram was generated. Valid systems are enumerated in Table 4. This function
has no arguments and throws no exceptions.

origin This function returns an enumeration which specifies the origin of the platform’s
data. Valid origins are enumerated in Table 5. This function has no arguments and
throws no exceptions.

id This function returns the run identifier. This identifier was established by the
ground, transmitted to the LAT and simply reflected, with no interpretation by
FSW, in the data. This function has no arguments and throws no exceptions.

startedAt Returns the absolute time at which the run began. This time is expressed as the
number of seconds since the standard epoch (00:00:00.0 hours at January 1st,
2001). This function has no arguments and throws no exceptions.

3.6 Open Information

This information encapsulated by this class is present once per datagram parsed by an event
parser (see, for example Section 3.3). On the whole, the class is self-describing, with the
requester method returning what entity caused the datagram to be emitted and the reason
method expressing why. For example, if the ground requested a run to be initiated, the
requester method would return the enumeration Operator and the reason method
would return the enumeration Start.

The definition for this class is contained in Listing 6:

Table 4 Enumeration of platform identifiers for the RunInfo class

Enumeration The system which captured the data was...

Lat The flight article

Testbed A hardware simulated LAT

Host A software simulated LAT

Table 5 Enumeration of origin identifiers for the Run class

Enumeration The origin of the platform’s data was...

Orbit On orbit

MonteCarlo From a simulation

Ground From a ground-based test
page 32 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.6.1 Constructor synopsis

OpenInfo From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to the datagram. The constructor throws no exceptions.

3.6.2 Member synopsis

modeChanges This function returns the number of mode changes since the start of the run.
See the mode method described below for a definition of potential mode changes.
This function has no arguments and throws no exceptions.

datagrams This function returns the current number of datagrams sent by the platform
since the start of the run. This function has no arguments and throws no
exceptions.

reason This function returns an enumeration which specifies the reason the datagram
was created. Valid reasons are enumerated in Table 8. The member function has
no arguments and throws no exceptions.

requester This function returns an enumeration which specifies who requested the
datagram to be created. Valid requesters are enumerated in Table 9. This function
has no arguments and throws no exceptions.

Listing 6 Class definition for OpenInfo

1: class OpenInfo {
2: public:
3: OpenInfo(const _QSE_ctx*);
4: public:
5: ~OpenInfo();
6: public:
7: unsigned modeChanges() const;
8: unsigned datagrams() const;
9: public:

10: enum Reason {Start=1, Resume=2};
11: Reason reason() const;
12: public:
13: enum Requester {Operator, Automatic, Unknown};
14: Requester requester() const;
15: public:
16: enum Crate {Epu0, Epu1, Epu2, Siu0, Siu1, Aux};
17: Crate crate() const;
18: public:
19: enum Mode {Normal, TOO, ARR=3, Calibration, Diagnostic};
20: Mode mode() const;
21: };
not for public release page 33

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
crate This function returns an enumeration which specifies on which flight crate the
datagram was generated. Valid crates are enumerated in Table 6. This function
has no arguments and throws no exceptions.

mode This function returns an enumeration which specifies the mode under which the
datagram was generated. Valid modes are enumerated in Table 7. This function
has no arguments and throws no exceptions.

Table 6 Enumeration of crate identifiers for the OpenInfo class

Enumeration meaning is...

Epu0 Event Processing Unit (EPU) zero (0)

Epu1 Event Processing Unit (EPU) one (1)

Epu2 Event Processing Unit (EPU) two (2)

Siu0 System Interface Unit (SIU) zero (0)

Siu1 System Interface Unit (SIU) one (1)

Aux External Crate

Table 7 Enumeration of mode identifiers for the OpenInfo class

Enumeration datagram was emitted...

Normal while in normal mode

TOO during a Target Of Opportunity (TOO)

ARR during an Autonomous Re-point Request (ARR)

Calibration during a detector calibration

Diagnostic while operating in a diagnostic mode

Table 8 Enumeration of reason identifiers for the OpenInfo class

Enumeration meaning is...

Start First datagram after the start of a run.

Resume First datagram after a run was paused and then restarted.
page 34 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.7 Close Information

This information encapsulated by this class is present once per datagram parsed by an event
parser (see, for example Section 3.3). On the whole, the class is self-describing, with the
requester method returning what entity caused the datagram to be closed and the reason
method expressing why. For example, if the ground requested a run to stop, the requester
method would return the enumeration Operator and the reason method would return the
enumeration Stop.

The definition for this class is contained in Listing 7:

Table 9 Enumeration of requesters for the OpenInfo class

Enumeration meaning is...

Operator Datagram was emitted through operator request

Automatic Datagram was one in a series of previously begun sequence.

Unknown ?

Listing 7 Class definition for CloseInfo

1: class CloseInfo {
2: public:
3: CloseInfo(const _QSE_ctx*);
4: public:
5: ~CloseInfo();
6: public:
7: enum Reason {Stop, Pause, Abort, Unknown};
8: Reason reason() const;
9: public:

10: enum Requester {Operator,
11: Automatic,
12: TimedOut,
13: CountedOut,
14: Full,
15: Unknown};
16: Requester requester() const;
17: };
not for public release page 35

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.7.1 Constructor synopsis

CloseInfo From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness.The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

3.7.2 Member synopsis

reason This function returns an enumeration which specifies the reason the datagram
was closed. Valid reasons are enumerated in Table 10. The member function has
no arguments and throws no exceptions.

requester This function returns an enumeration which specifies who requested the
datagram to be closed. Valid requesters are enumerated in Table 11. This function
has no arguments and throws no exceptions.

Table 10 Enumeration of reason identifiers for the CloseInfo class

Enumeration meaning is...

Stop Last datagram in a run.

Pause Last datagram before a run was paused.

Abort Last datagram before a run was aborted.

Unknown ?

Table 11 Enumeration of requesters for the CloseInfo class

Enumeration meaning is...

Operator Datagram was closed through operator request

Automatic Datagram was one in a series of previously begun sequence.

TimedOut Maximum Time limit per datagram was reached.

CountedOut Maximum events/datagram limit reached

Full Maximum size limit was reached

Unknown ?
page 36 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.8 Scalers

This class represents the statistics (scalers) accumulated by FSW over the lifetime of a run.
Each scaler has a corresponding method which returns the current value of that scaler. For
example, the livetime method returns the amount of accumulated livetime. As these scaler
are accumulated over the lifetime of a run, they are initialized each time a run is initiated. The
scalers are updated for each event parsed by an event parser (see, for example Section 3.3).
Note, that the values returned by the methods of this class are 64-bit unsigned integers.

The definition for this class is contained in Listing 8:

3.8.1 Constructor synopsis

Scalers From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

3.8.2 Member synopsis

elapsed This function returns the current elapsed time of the run. This time is expressed in
LAT clock-tics. Nominally, one clock-tic is equal to 50 nanoseconds. This function
has no arguments and throws no exceptions.

livetime This function returns the current amount time livetime (see [22]) since the run
began. This time is expressed in LAT clock-tics. Nominally, one clock-tic is equal
to 50 nanoseconds. This function has no arguments and throws no exceptions.

Listing 8 Class definition for Scalers

1: class Scalers {
2: public:
3: Scalers(const _QSE_ctx*);
4: public:
5: ~Scalers();
6: public:
7: unsigned long long int elapsed() const;
8: unsigned long long int livetime() const;
9: unsigned long long int prescaled() const;

10: unsigned long long int discarded() const;
11: unsigned long long int sequence() const;
12: unsigned long long int deadzone() const;
13: };
not for public release page 37

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
prescaled This function returns the current number of events prescaled away since the run
began (see [22]). This function has no arguments and throws no exceptions.

discarded This function returns the current number of events discarded due to deadtime
since the run began (see [22]). This function has no arguments and throws no
exceptions.

sequence This function returns the current number of events discarded due to deadtime
since the run began (see [22]). This function has no arguments and throws no
exceptions.

deadzone This function returns the current number of times the GEM was in the “deadzone”
(see [22]). The GEM takes two clock cycles to recover from one window opening
before it may open another. During this time the GEM is “dead”. A window
wishing to open during in this two clock period is caught in the “deadzone”. This
function has no arguments and throws no exceptions.

3.9 Time Tone

Time-Tone messages are received by the LAT from the spacecraft once per second. This class
represents the contents of such a message. As these messages arrive, they are embedded in the
next available datagram and emitted onto the science stream. These messages reflect the
absolute time and are used to correct any local (LAT relative) measured time, for example, the
time at which an event was created (see Section 3.4). As in any transmitted message, the
possibility exists that either the acquisition of the message’s data, or its transmission could
fail. In such a case, the invalid method will return TRUE. It is important to establish the
validity of a Time-Tone message before using any of its timing information, as this information
is undefined unless the invalid method returns FALSE. If the method does return TRUE, the
exact reason why the message is invalid can be determined by probing each of the error
methods. These methods (for example, gpsMissing) return a boolean indicating whether or
not the corresponding error is was present when constructing the message. Note, that the
message could be invalid for more then one of these reasons.

The definition for this class is contained in Listing 9:
page 38 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.9.1 Constructor synopsis

TimeTone From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

3.9.2 Member synopsis

incomplete Returns a positive (non-zero value) if the acquisition of the time-tone
information could not complete successfully. If the acquisition of this information
did complete, a value of zero (0) is returned. This function has no arguments and
throws no exceptions.

timeSecs Returns the absolute time at the time hack. This time is defined as the number of
seconds since the standard epoch (00:00:00.0 hours at January 1st, 2001) in
seconds. This function has no arguments and throws no exceptions.

timeHack Returns a reference to an object corresponding to the local time at the time hack.
(see Section 3.11) This function has no arguments and throws no exceptions.

flywheeling Returns a value specifying how many times a CPU failed to construct its
Time-Tone message. In such a case, a “fake” message is synthesized and an
internal counter increments. While incrementing this counter the CPU is said to be
“fly wheeling”. The counter is reset at the first opportunity the CPU is able to
successfully construct a message. As a message is constructed once per second,

Listing 9 Class definition for TimeTone

1: class TimeTone {
2: public:
3: TimeTone(const _QSE_ctx*);
4: public:
5: ~TimeTone();
6: public:
7: unsigned long incomplete() const;
8: unsigned long timeSecs() const;
9: const GemTime& timeHack() const;

10: unsigned long flywheeling() const;
11: public:
12: bool missingGps() const;
13: bool missingCpuPps() const;
14: bool missingLatPps() const;
15: bool missingTimeTone() const;
16: };
not for public release page 39

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
this return value could also be interpreted as the number of seconds the CPU has
fly wheeled. If the returned value of this method is non-zero, one or more of the
error flags (see the methods above) will be asserted. This function has no
arguments and throws no exceptions.

missingGps Returns a boolean specifying whether the time indicated within the time
specified in the message was synchronized by the spacecraft’s GPS receiver and
can, therefore, be assumed to be stable with respect to the LAT’s clock. If the value
returned is TRUE, the message was synthesized with respect to the spacecraft’s
local clock (the spacecraft is “fly wheeling”). If the value returned is FALSE, the
time was synthesized with respect to the spacecraft’s GPS receiver. This function
has no arguments and throws no exceptions.

missingCpuPps Returns a boolean specifying whether the arrival of the 1-PPS signal at the
CPU timed out. If the value returned is TRUE, the 1-PPS signal timed out, if FALSE
it did not. This function has no arguments and throws no exceptions.

missingLatPps Returns a boolean specifying whether the arrival of the 1-PPS signal at the
LAT timed out. If the value returned is TRUE, the 1-PPS signal timed out, if FALSE
it did not. This function has no arguments and throws no exceptions.

missingTimeTone Returns a boolean specifying whether the arrival of the time tone
message from spacecraft to LAT timed out. If the value returned is TRUE, the 1-PPS
signal timed out, if FALSE it did not.This function has no arguments and throws
no exceptions.

3.10 Meta Event

This class encapsulates the information available when processing an event. Processing an
event is always accomplished in the context of an event parser (see for example Section 3.3).
Therefore, the contents of this object will always reflect their value at the time the event was
created. In turn this implies that some, (but not necessarily all) the values contained by this
object will vary as a function of event. For example, the event time changes for each event,
while the information represented by the run method would only change when a new run is
declared.

The definition for this class is contained in Listing 10:

Listing 10 Class definition for MetaEvent

1: class MetaEvent {
2: public:
3: MetaEvent(const _QSE_ctx*);
4: public:
5: ~MetaEvent();
6: public:
7: unsigned timeTics() const;
8: const GemTime& timeHack() const;
9: const Context& context() const;

10: };
page 40 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.10.1 Constructor synopsis

MetaEvent From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within a
datagram, the meta data necessary to construct an object of this class. The
constructor throws no exceptions.

3.10.2 Member synopsis

timeTics Returns the time (in tics) at which the event was triggered. The time is measured
relative to the LAT’s local timebase (see [22]). This clock increments at the LAT
system clock rate (nominally 20 MHZ) and therefore, nominally one tic equals 50
nano-seconds. This function has no arguments and throws no exceptions.

timeHack Returns a reference to an object corresponding to the local time at the time hack.
(see Section 3.11) This function has no arguments and throws no exceptions.

context Returns a reference to an object containing the datagram’s context information
(see Section 3.4). This function has no arguments and throws no exceptions.

3.11 GEM Time

Each time the 1-PPS signal arrives at the GEM, the GEM takes two actions:

— It samples and stores the current value of the LAT clock. This clock increments at the
LAT system clock rate (nominally 20 MHZ) and therefore, nominally one count equals
50 nanoseconds.

— It increments a 7-bit counter and then samples and stores its current value. This value
is initialized to zero whenever the GEM resets or the counter overflows.

These two quantities are stored in a GEM register (see [22]) where they may sampled at any
time. Note that this nominally this register changes its value only once per second. An
instantiation of this class represents one sample of this register. This register is sampled at two
significant times:

— at the arrival of the 1-PPS signal at any one of its crates (by FSW). This sample is
contained in TimeTone (see Section 3.9).

— when an event comes into existence (by the DAQ system). This sample is contained in
the MetaEvent (see Section 3.4).

The definition for this class is contained in Listing 11:
not for public release page 41

DataFlow Public Interface (DFI) Users Manual
Chapter 3 The Event support package Version/Issue: 0.5/1
3.11.1 Constructor synopsis

GemTime From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

3.11.2 Member synopsis

tics Returns the time relative to the LAT’s local timebase (see [22]). The counter
corresponding to this clock increments at the LAT system clock rate (nominally 20
MHZ) and therefore, nominally one tic equals 50 nanoseconds. This function has
no arguments and throws no exceptions.

hacks Returns the current number of 1-PPS time hacks (see [22]). The counter
corresponding to this clock increments at each received time hack (1 HZ) and
therefore, nominally one tic equals 1 second. This counter has a range of seven (7)
bits, which on overflow simply wraps. This function has no arguments and
throws no exceptions.

3.12 Exceptions

3.12.1 Decompression not supported

to be written.

Listing 11 Class definition for GemTime

1: class GemTime {
2: public:
3: GemTime(const _QSE_ctx*);
4: public:
5: ~GemTime();
6: public:
7: unsigned tics() const;
8: unsigned hacks() const;
9: };
page 42 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
Chapter 4

The LPA support package

4.1 Overview

This package supports the parsing of datagrams whose origin were the LAT Physics Analysis
facility (LPA). Parsing implies the search for, and the processing of, the events contained
within a LPA datagram. As one advances through the datagram processing events, the meta
information for that event is made available (see Section 4.4). The act of parsing is
encapsulated in the EventParser class described in Section 4.3. For each event the user has
the option of decompressing and then accessing the event’s data (see Section 4.5). Note, that
this classes in this package depend heavily on the classes found in the Event package (see
Chapter 3).

The relationship between the classes of this package is illustrated in Figure 4:

Figure 4 Class dependencies for the LPA support package

EventHandlers

DfiEvent::Parser

EventParser MetaEvent

DfiEvent::MetaEvent

Event

LdfDfiEvent::Context Gamma Unknown XXXX

EventHandler
not for public release page 43

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
4.2 Name space - DfiLpa

4.3 Event Parser

The principal function of this class is to iterate over the events contained within a LPA
datagram. In order to do so, the class defines three virtual methods which must be satisfied by
a derived class:

— Open, which is called once, before any events are parsed.

— Process, which is called for each event of the datagram and represents the work to
be performed by the derived class with respect to that event.

— Close, which is called once , after all events of the datagram have been parsed.

In short, three user methods are triggered: once at the beginning of the datagram, once at its
end and once for every event in between. Each triggered method, is passing as an argument, a
reference to the appropriate information for that method (see Section 3.4 and Section 4.5).
Note that the parser processes events in the order in which they are stored in the datagram.

To initiate parsing the base class’s parse method is invoked (see Section 2.4). This method
takes as an argument the datagram to be parsed. Note, that the type identifier of the datagram
must correspond to an LPA datagram, if not, an exception is declared.

The definition for this class is contained in Listing 12:

4.3.1 Constructor synopsis

EventParser This constructor creates a object to process the events of a LPA datagram. The
constructor’s argument is a enumeration specifying the maximum level of event
data decompression supported by the parser. See Section 4.5 for information on
how this argument is used. If the parser cannot support the specified
decompression level the constructor will throw the exception specified in
Section 3.12.1.

Listing 12 Class definition for LPA EventParser

1: class EventParser : public DfiEvent::Parser {
2: public:
3: Parser(DfiEvent::Decompression);
4: public:
5: virtual ~EventParser();
6: public:
7: virtual bool open(const DfiEvent::Context&) = 0;
8: virtual bool process(const MetaEvent&) = 0;
9: virtual bool close(const DfiEvent::Context&) = 0;

10: };
page 44 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
4.3.2 Member synopsis

open This method will be called once per datagram. It is called immediately before any
events of the datagram are parsed (see below). The argument is a reference to an
object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was opened.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

process This method will be called for each event present in the parsed datagram. The
argument is a reference to an object which provides a description of the event to
be processed (see Section 4.4). Note, that the contents of this object reflect their
value at the time of the corresponding event. This function returns a boolean
specifying whether or not to abort parsing. If the function returns TRUE, parsing
continues. If the function returns FALSE, parsing aborts. When the parser aborts,
control is returned to the caller of the parse method. Note this function is pure
virtual and, therefore, its implementation must be provided by a derived class.
The function throws no exceptions.

close This method will be called once per datagram. It is called immediately after all (if
any) events of the datagram are parsed (see above). The argument is a reference
to an object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was closed.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

4.4 Meta Event

A reference to an instance of this class is passed into the process method of the event parser
(described in Section 4.3). This method is called by the parser for each event contained within
a datagram. As the parser advances through a datagram’s events, the contents of the
MetaEvent are constantly changing to reflect their value for any, one, specified event. Note
that this class it is derived from DfiEvent::MetaEvent (see Section 3.4). In order to go from
a meta event to the event’s data, requires instantiating an Event (see Section 4.5), passing as an
argument an object of this class.

The definition for this class is contained in Listing 13:
not for public release page 45

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
4.4.1 Constructor synopsis

MetaEvent From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

4.4.2 Member synopsis

softwareKey This function returns the key which uniquely defines the current software
configuration. This key was established by the ground, transmitted to the LAT,
where it was applied and reflected, by FSW in returned science data. This function
has no arguments and throws no exceptions.

hardwareKey This function returns the key which uniquely defines the current hardware
configuration. This key was established by the ground, transmitted to the LAT,
where it was applied and reflected, by FSW in returned science data. This function
has no arguments and throws no exceptions.

4.5 Event

This class is used to extract from a MetaEvent (see Section 4.4) the event’s data. Typically,
this information was transmitted from the LAT to the ground compressed. Instantiating an
object of this class will (as appropriate) automatically decompress the event’s data. Once
expansion has been performed by the constructor, the data method can be called to access the
event’s data. The type of object returned by this method is Ldf. A discussion of this structure
is beyond the scope of this document (see [28]). Note, that under some circumstances the
event data cannot be decompressed. For example, the compression level of the event is greater
then the compression level supported for the parser which located this event (see Section 3.3).
In such a case, the constructor will throw an exception. Finally, the event data is copied to this

Listing 13 Class definition for LPA MetaEvent

1: class MetaEvent : public DfiEvent::MetaEvent {
2: public:
3: MetaEvent(const _QSE_ctx*);
4: public:
5: ~MetaEvent();
6: public:
7: unsigned softwareKey() const;
8: unsigned hardwareKey() const;
9: };
page 46 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
object, consequently, any object instantiated from this class may have a lifetime completely
independent of both the parser and the datagram from which it was derived.

The definition for this class is contained in Listing 14:

4.5.1 Constructor synopsis

Event The argument is a reference to the meta-event which contains the event data to be
decompressed. If the event cannot be expanded the exception described in
Section 4.9.1 is thrown.

4.5.2 Member synopsis

data This method returns a reference to the decompressed event data. The function
throws no exceptions.

4.6 Event Handlers

To be written.

The definition for this class is contained in Listing 15:

Listing 14 Class definition for LPA Event

1: class Event {
2: public:
3: Event(const MetaEvent&);
4: public:
5: ~Event();
6: public:
7: const Ldf& data() const;
8: };
not for public release page 47

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
4.6.1 Constructor synopsis

the default.

4.6.2 Member synopsis

find This method is called to initiate finding the set of Event Handlers in the specified
meta event. The function has a single argument which is a reference to an object
specifying the meta event to be searched for Event Handlers. This function
throws no exceptions and returns no value.

has(const Gamma&) This method will be called for each gamma based event handler
present in the searched meta event. The argument is a reference to an object
which provides a description of the event handler (see Section 4.7). Note, that the
contents of this object reflect their value at the time of the corresponding meta
event. This function returns a boolean specifying whether or not to abort
searching the meta event. If the function returns TRUE, searching continues. If the
function returns FALSE, searching aborts. When the parser aborts, control is
returned to the caller of the find method. Note this function is pure virtual and,
therefore, its implementation must be provided by a derived class. The function
throws no exceptions.

4.7 Gamma Handler

To be written.

The definition for this class is contained in Listing 16:

Listing 15 Class definition for EventHandlers

1: class EventHandlers {
2: public:
3: EventHandlers();
4: public:
5: virtual ~EventHandlers();
6: public:
7: virtual boolean has(const Gamma&) const = 0;
8: virtual boolean has(const Unknown&) const = 0;
9: virtual boolean has(const XXXX&) const = 0;

10: public:
11: void find(const MetaEvent&) const;
12: };
page 48 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
4.7.1 Constructor synopsis

Gamma From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

4.7.2 Member synopsis

to be written.

4.8 Event Handler

To be written.

The definition for this class is contained in Listing 17:

Listing 16 Class definition for Gamma

1: class Gamma : public EventHandler {
2: public:
3: Gamma(const _QSE_ctx*);
4: public:
5: ~Gamma();
6: public:
7: unsigned xxx() const;
8: };

Listing 17 Class definition for EventHandler

1: class EventHandler {
2: public:
3: EventHandler(const _QSE_ctx*);
4: public:
5: ~EventHandler();
6: public:
7: unsigned file() const;
8: unsigned priority() const;
9: unsigned index() const;

10: };
not for public release page 49

DataFlow Public Interface (DFI) Users Manual
Chapter 4 The LPA support package Version/Issue: 0.5/1
4.8.1 Constructor synopsis

EventHandler From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

4.8.2 Member synopsis

file This function returns the key which uniquely defines the Event Handler
configuration. This key was established by the ground, transmitted to the LAT,
where it was applied and reflected, by FSW in returned science data. This function
has no arguments and throws no exceptions.

priority This function returns the key which uniquely defines the Event Handler Priority.
This key was established by the ground, transmitted to the LAT, where it was
applied and reflected, by FSW in returned science data. This function has no
arguments and throws no exceptions.

index This function returns the key which uniquely defines the Event Handler index.
This key was established by the ground, transmitted to the LAT, where it was
applied and reflected, by FSW in returned science data. This function has no
arguments and throws no exceptions.

4.9 Exceptions

4.9.1 Decompression Failed

to be written.
page 50 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 5 LCI support Version/Issue: 0.5/1
Chapter 5

LCI support

5.1 Overview

This package supports the parsing of datagrams whose origin were the LAT Charge Injection
facility (LCI). Parsing implies the search for, and the processing of, the events contained within
a LCI datagram. As one advances through the datagram processing events, the meta
information for that event is made available. This information varies as a function of the
subsystem being calibrated, however, each subsystem generates a common set of information
and this information is encapsulated in the MetaEvent class (see Section 5.4). Parsing is also
subsystem dependent, however, just as in the case for event information, all parsing derives
from a common base class (EventParser described in Section 3.3). For each event the user
has the option of decompressing and then accessing the event’s data (see Section 5.6). Note
that the classes of this package depend heavily on the classes found in the Event package,
described in Chapter 3.

In short, this chapter describes the set of classes whose behavior is independent of subsystem
calibrated and a description of those classes whose behavior is subsystem dependent are
relegated to their own individual chapters. In particular:

— The ACD (Chapter 6)

— The Tracker (Chapter 7)

— The Calorimeter (Chapter 8)

The relationship between all the classes of this package is illustrated in Figure 5:
not for public release page 51

DataFlow Public Interface (DFI) Users Manual
Chapter 5 LCI support Version/Issue: 0.5/1
5.2 Name space - DfiLci

5.3 Constants

This constant is used as a sentinel value in the returns from many of the helper functions in
the classes described below. For example, the method single of Channel (see Section 5.6).

5.4 Meta Event

A reference to an instance of this class is passed into the process method of the event parser
(described in Section 3.3). This method is called by the parser for each event contained within
a datagram. As the parser advances through a datagram’s events, the contents of the
MetaEvent are constantly changing to reflect their value for any, one, specified event. Note

Figure 5 Class dependencies for the LCI support package

MetaEvent

Event::MetaEvent

Event

Ldf

DfiEvent::Context

Event::Parser

AcdMetaEvent TkrMetaEvent CalMetaEvent

CalParserTkrParserAcdParser

AcdTrigger CalTriggerChannel

static const unsigned short UNDEFINED = 0xFFFF;
page 52 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 5 LCI support Version/Issue: 0.5/1
that this class it is derived from DfiEvent::MetaEvent (see Section 3.4). In order to go from a
meta event to the event’s data, requires instantiating an Event (see Section 5.6), passing as an
argument an object of this class.

The definition for this class is contained in Listing 18:

5.4.1 Constructor synopsis

MetaEvent From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

5.4.2 Member synopsis

autoRange This function returns a boolean which specifies whether or not for the specified
calibration auto ranging was enabled. If the returned value is TRUE, auto ranging
was enabled. If the returned value is FALSE, it was not. This function has no
arguments and throws no exceptions.

zeroSuppression This function returns a boolean which specifies whether or not for the
specified calibration data the data were zero-suppressed. If the returned value is
TRUE, data were zero-suppressed. If the returned value is FALSE, they were not.
This function has no arguments and throws no exceptions.

Listing 18 Class definition for LCI MetaEvent

1: class MetaEvent : public DfiEvent::MetaEvent {
2: public:
3: MetaEvent(const _QSE_ctx*);
4: public:
5: ~MetaEvent();
6: public:
7: bool autoRange() const;
8: bool zeroSuppresion() const;
9: unsigned periodicPrescale() const;

10: public:
11: unsigned softwareKey() const;
12: unsigned writeCfg() const;
13: unsigned readCfg() const;
14: };
not for public release page 53

DataFlow Public Interface (DFI) Users Manual
Chapter 5 LCI support Version/Issue: 0.5/1
periodicPrescale This function returns the value which the GEM’s periodic trigger was
prescaled. Consequently, this value (in conjunction with the value of the system
clock1), is used to determine the actual rate of the periodic trigger. A value of one
(1) divides the system clock rate by two, a value of two (2) divides the system
clock rate by three, and so forth. The periodic trigger is used by LCI to drive the
rate at which it both injects charge and reads out the detector. This function has
no arguments and throws no exceptions.

softwareKey This function returns the key which uniquely defines the LCI software
configuration. This key was established by the ground, transmitted to the LAT,
where it was applied and reflected, by FSW in returned science data. This function
has no arguments and throws no exceptions.

writeCfg This function returns the LATC file key which uniquely defines the hardware
configuration initially applied for the calibration. This key was established by the
ground, transmitted to the LAT, where it was applied and reflected, by FSW in
returned the returned calibration data. This function has no arguments and
throws no exceptions.

readCfg This function returns the LATC file key which uniquely defines the map of LAT
hardware nodes to ignore when reading or verifying the configuration initially
applied for the calibration (see the method above). This key was established by
the ground, transmitted to the LAT, where it was applied and reflected, by FSW in
the returned calibration data. This function has no arguments and throws no
exceptions.

5.5 Event

This class is used to extract from a MetaEvent (see Section 5.4) the event’s data. Typically,
this information was transmitted from the LAT to the ground compressed. Instantiating an
object of this class will (as appropriate) automatically decompress the event’s data. Once
expansion has been performed by the constructor, the data method can be called to access the
event’s data. The type of object returned by this method is Ldf. A discussion of this structure
is beyond the scope of this document (see [28]). Note, that under some circumstances the
event data cannot be decompressed. For example, the compression level of the event is greater
then the compression level supported for the parser which located this event (see Section 3.3).
In such a case, the constructor will throw an exception. Finally, the event data is copied to this
object, consequently, any object instantiated from this class may have a lifetime completely
independent of both the parser and the datagram from which it was derived.

The definition for this class is contained in Listing 19:

1. Nominally 20 MHZ.
page 54 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 5 LCI support Version/Issue: 0.5/1
5.5.1 Constructor synopsis

Event The argument is a reference to the meta-event which contains the event data to be
decompressed. If the event cannot be expanded the exception described in
Section 8.5.1 is thrown.

5.5.2 Member synopsis

data This method returns a reference to the decompressed event data. The function
throws no exceptions.

5.6 Channel

To be written. The definition for this class is contained in Listing 20:

Listing 19 Class definition for LCI Event

1: class Event {
2: public:
3: Event(const MetaEvent&);
4: public:
5: ~Event();
6: public:
7: const Ldf& data() const;
8: };

Listing 20 Class definition for Channel

1: class Channel {
2: public:
3: Channel(const _QSE_ctx*);
4: public:
5: ~Channel();
6: public:
7: unsigned short single() const;
8: bool all() const;
9: bool latc() const;

10: };
not for public release page 55

DataFlow Public Interface (DFI) Users Manual
Chapter 5 LCI support Version/Issue: 0.5/1
5.6.1 Constructor synopsis

Channel From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

5.6.2 Member synopsis

single This function returns the single channel number enabled in the corresponding
calibration data. If this value is equal to the constant UNDEFINED (see
Section 5.3), a single channel was not enabled and one of the methods all, or
latc will return a legitimate value. The interpretation of the returned channel
number is dependent on which subsystem was calibrated. See Table 12, Table 13,
and Table 14. This function has no arguments and throws no exceptions.

all This function returns a boolean which specifies whether or not all channels were
enabled in the corresponding calibration data. If the returned value is TRUE, all
channels were enabled. If the returned value is FALSE, all channels were not
enabled. The interpretation of all is dependent on which subsystem was
calibrated. See Table 12, Table 13, and Table 14. This function has no arguments
and throws no exceptions.

latc This function returns a boolean which specifies whether the channels enabled in
the corresponding calibration data were determined by an external (LATC)
database. If the returned value is TRUE, the enabled channels were determined by
the database. If the returned value is FALSE, they were not. This function has no
arguments and throws no exceptions.
page 56 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 6 ACD calibration support Version/Issue: 0.5/1
Chapter 6

ACD calibration support

6.1 Overview

The two classes described below are used to process the information returned from LCI when
calibrating the ACD. These classes are based on the classes described in Chapter 5. Each time
the calibration system (LCI) injects charge a corresponding event is generated. An event’s
information is encapsulated in the AcdMetaEvent class (see Section 6.3). These calibration
events are contained in a series of datagrams, sent down to the ground on the science stream
(see [27]) by LCI. In order to process the events within any one datagram the user parses the
datagram using the AcdParser described in Section 6.2.

6.2 ACD Parser

The principal function of this class is to iterate over the a LCI datagram generated during an
ACD electronics calibration. In order to do so, the class defines three virtual methods which
must be satisfied by a derived class:

— Open, which is called once, before any events are parsed.

— Process, which is called for each event of the datagram and represents the work to
be performed by the derived class with respect to that event.

— Close, which is called once , after all events of the datagram have been parsed.

In short, three user methods are triggered: once at the beginning of the datagram, once at its
end, and once for every event in between. Each triggered method, is passing as an argument,
a reference to the appropriate information for that method (see Section 3.4 and Section 6.3).
Note that the parser processes events in the order in which they are stored in the datagram.

To initiate parsing the base class’s parse method is invoked (see Section 2.4). This method
takes as an argument a reference to the datagram to be parsed. Note, that the type identifier of
not for public release page 57

DataFlow Public Interface (DFI) Users Manual
Chapter 6 ACD calibration support Version/Issue: 0.5/1
the datagram must correspond to an LCI datagram resulting from an ACD calibration. If not,
an exception is declared.

The definition for this class is contained in Listing 21:

6.2.1 Constructor synopsis

AcdParser The constructor’s argument is a enumeration specifying the maximum level of
event data decompression supported by the parser. See Section 3.3 for
information on how this argument is used. If the parser cannot support the
specified decompression level the constructor will throw the exception specified
in Section 3.12.1.

6.2.2 Member synopsis

open This method will be called once per datagram. It is called immediately before any
events of the datagram are parsed (see below). The argument is a reference to an
object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was opened.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

process This method will be called for each event present in the parsed datagram. The
argument is a reference to an object which provides a description of the event to
be processed (see Section 6.3). Note, that the contents of this object reflect their
value at the time of the corresponding event. This function returns a boolean
specifying whether or not to abort parsing. If the function returns TRUE, parsing
continues. If the function returns FALSE, parsing aborts. When the parser aborts,
control is returned to the caller of the parse method. Note this function is pure
virtual and, therefore, its implementation must be provided by a derived class.
The function throws no exceptions.

Listing 21 Class definition for AcdParser

1: class AcdParser : public DfiEvent::Parser {
2: public:
3: AcdParser(DfiEvent::Decompression);
4: public:
5: virtual ~AcdParser();
6: public:
7: virtual bool open(const DfiEvent::Context&) = 0;
8: virtual bool process(const AcdMetaEvent&) = 0;
9: virtual bool close(const DfiEvent::Context&) = 0;

10: };
page 58 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 6 ACD calibration support Version/Issue: 0.5/1
close This method will be called once per datagram. It is called immediately after all (if
any) events of the datagram are parsed (see above). The argument is a reference
to an object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was closed.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

6.3 ACD Meta Event

A reference to an instance of this class is passed into the process method of the event parser
(described in Section 6.2). This method is called by the parser for each event contained within
a datagram. As the parser advances through a datagram’s events the contents of the meta
event are constantly changing to reflect their value for any, one, specified event. Note that this
class it is derived from the common event calibration class MetaEvent (see Section 5.4). In
order to go from a meta event to the event’s data, requires instantiating an Event (see
Section 5.4), passing as an argument an object of this class.

The definition for this class is contained in Listing 22:

6.3.1 Constructor synopsis

AcdMetaEvent From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

Listing 22 Class definition for AcdMetaEvent

1: class AcdMetaEvent : public MetaEvent {
2: public:
3: AcdMetaEvent(const _QSE_ctx*);
4: public:
5: ~AcdMetaEvent();
6: public:
7: unsigned short injected() const;
8: unsigned short delay() const;
9: unsigned short threshold() const;

10: AcdTrigger trigger const;
11: Channel from const;
12: };
not for public release page 59

DataFlow Public Interface (DFI) Users Manual
Chapter 6 ACD calibration support Version/Issue: 0.5/1
6.3.2 Member synopsis

injected This function returns a value which defines the amount of charge which was
injected for the specified calibration data. This value is specified in units of DAC
counts. The relationship between DAC counts and charge is subsystem
dependent. If the amount of injected charge was determined from the LATC
database the constant UNDEFINED (see Section 5.3) is returned. This function has
no arguments and throws no exceptions.

delay This function returns a value which defines the time delay between the injection
of the charge and the TACK used to read out the corresponding calibration data.
This value is specified in units of LAT clock tics, where one tic is nominally 50
nanoseconds. If the delay was determined from the LATC database the constant
UNDEFINED (see Section 5.3) is returned. This function has no arguments and
throws no exceptions.

threshold This function returns a value which defines the charge threshold necessary to
cross in order to generate the specified calibration data. This value is specified in
units of DAC counts. The relationship between DAC counts and charge is
subsystem dependent. If the threshold was determined from the LATC database
the constant UNDEFINED (see Section 5.3) is returned. This function has no
arguments and throws no exceptions.

trigger This method returns an object (see Section 6.4) which specifies the thresholds for
the ACD’s signals which are sent to the trigger system. This function has no
arguments and throws no exceptions.

from This method returns an object (see Section 5.6) which describes the channel(s)
enabled in the corresponding calibration data. The interpretation of channel
number is subsystem dependent. See Table 12 for the interpretation of an ACD
channel. This function has no arguments and throws no exceptions.

6.4 ACD Trigger Discriminators

An instance of this class is returned from the ACD’s meta event (see Section 6.3). This class
specifies the values of the discriminators which specify the threshold for the production of the
trigger signals generated by the ACD and used by the trigger system

Table 12 Type definition for the channel class when used in an ACD calibration.

Member Interpretation

Range1

1. In decimal.

minimum maximum

single One channel is enabled. 0 215

all All channels in all GAFEs are enabled. N/A N/A
page 60 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 6 ACD calibration support Version/Issue: 0.5/1
The definition for this class is contained in Listing 23:

6.4.1 Constructor synopsis

AcdTrigger From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

6.4.2 Member synopsis

veto This function returns a value which (in conjunction with the value below)
specifies the discrimination threshold necessary to toggle the ACD’s veto signal
sent to the GEM (see [22]). This value is specified in units of DAC counts. The
relationship between DAC counts and charge is subsystem dependent. If the
discriminated value was determined from the LATC database, the constant
UNDEFINED (see Section 5.3) is returned. This function has no arguments and
throws no exceptions.

vetoVernier This function returns a value which (in conjunction with the value below)
specifies the discrimination threshold necessary to toggle the ACD’s veto signal
sent to the GEM (see [22]). This value is specified in units of DAC counts. The
relationship between DAC counts and charge is subsystem dependent. If the
discriminated value was determined from the LATC database, the constant
UNDEFINED (see Section 5.3) is returned. This function has no arguments and
throws no exceptions.

Listing 23 Class definition for AcdTrigger

1: class AcdTrigger {
2: public:
3: AcdTrigger(const _QSE_ctx*);
4: public:
5: ~AcdTrigger();
6: public:
7: unsigned short veto() const;
8: unsigned short vetoVernier() const;
9: unsigned short hld() const;

10: };
not for public release page 61

DataFlow Public Interface (DFI) Users Manual
Chapter 6 ACD calibration support Version/Issue: 0.5/1
hld This function returns a value which specified the (High Level) discrimination
threshold necessary to toggle the ACD’s CNO signal sent to the GEM (see [22]). This
value is specified in units of DAC counts. The relationship between DAC counts
and charge is subsystem dependent. If the discriminated value was determined
from the LATC database, the constant UNDEFINED (see Section 5.3) is returned.
This function has no arguments and throws no exceptions.
page 62 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 7 Tracker calibration support Version/Issue: 0.5/1
Chapter 7

Tracker calibration support

7.1 Overview

The two classes described below are used to process the information returned from LCI when
calibrating the tracker. These classes are based on the classes described in Chapter 5. Each time
the calibration system (LCI) injects charge a corresponding event is generated. An event’s
information is encapsulated in the TkrMetaEvent class (see Section 7.3). These calibration
events are contained in a series of datagrams, sent down to the ground on the science stream
(see [27]) by LCI. In order to process the events within any one datagram the user parses the
datagram using the TkrParser described in Section 7.2.

7.2 Tracker Parser

The principal function of this class is to iterate over the a LCI datagram generated during an
tracker electronics calibration. In order to do so, the class defines three virtual methods which
must be satisfied by a derived class:

— Open, which is called once, before any events are parsed.

— Process, which is called for each event of the datagram and represents the work to
be performed by the derived class with respect to that event.

— Close, which is called once , after all events of the datagram have been parsed.

In short, three user methods are triggered: once at the beginning of the datagram, once at its
end, and once for every event in between. Each triggered method, is passing as an argument,
a reference to the appropriate information for that method (see Section 3.4 and Section 7.3).
Note that the parser processes events in the order in which they are stored in the datagram.

To initiate parsing the base class’s parse method is invoked (see Section 2.4). This method
takes as an argument a reference to the datagram to be parsed. Note, that the type identifier of
not for public release page 63

DataFlow Public Interface (DFI) Users Manual
Chapter 7 Tracker calibration support Version/Issue: 0.5/1
the datagram must correspond to an LCI datagram resulting from a tracker calibration. If not,
an exception is declared.

The definition for this class is contained in Listing 24:

7.2.1 Constructor synopsis

TkrParser The constructor’s argument is a enumeration specifying the maximum level of
event data decompression supported by the parser. See Section 3.3 for
information on how this argument is used. If the parser cannot support the
specified decompression level the constructor will throw the exception specified
in Section 3.12.1.

7.2.2 Member synopsis

open This method will be called once per datagram. It is called immediately before any
events of the datagram are parsed (see below). The argument is a reference to an
object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was opened.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

process This method will be called for each event present in the parsed datagram. The
argument is a reference to an object which provides a description of the event to
be processed (see Section 7.3). Note, that the contents of this object reflect their
value at the time of the corresponding event. This function returns a boolean
specifying whether or not to abort parsing. If the function returns TRUE, parsing
continues. If the function returns FALSE, parsing aborts. When the parser aborts,
control is returned to the caller of the parse method. Note this function is pure
virtual and, therefore, its implementation must be provided by a derived class.
The function throws no exceptions.

Listing 24 Class definition for TkrParser

1: class TkrParser : public DfiEvent::Parser {
2: public:
3: TkrParser(DfiEvent::Decompression);
4: public:
5: virtual ~TkrParser();
6: public:
7: virtual bool open(const DfiEvent::Context&) = 0;
8: virtual bool process(const TkrMetaEvent&) = 0;
9: virtual bool close(const DfiEvent::Context&) = 0;

10: };
page 64 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 7 Tracker calibration support Version/Issue: 0.5/1
close This method will be called once per datagram. It is called immediately after all (if
any) events of the datagram are parsed (see above). The argument is a reference
to an object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was closed.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

7.3 Tracker Meta Event

A reference to an instance of this class is passed into the process method of the event parser
(described in Section 7.2). This method is called by the parser for each event contained within
a datagram. As the parser advances through a datagram’s events the contents of the meta
event are constantly changing to reflect their value for any, one, specified event. Note that this
class it is derived from the common event calibration class MetaEvent (see Section 5.4). In
order to go from a meta event to the event’s data, requires instantiating an Event (see
Section 5.4), passing as an argument an object of this class.

The definition for this class is contained in Listing 25:

7.3.1 Constructor synopsis

TkrMetaEvent From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

Listing 25 Class definition for TkrMetaEvent

1: class TkrMetaEvent : public MetaEvent {
2: public:
3: TkrMetaEvent(const _QSE_ctx*);
4: public:
5: ~TkrMetaEvent();
6: public:
7: unsigned short injected() const;
8: unsigned short delay() const;
9: unsigned short threshold() const;

10: unsigned short trigger const;
11: Channel from const;
12: };
not for public release page 65

DataFlow Public Interface (DFI) Users Manual
Chapter 7 Tracker calibration support Version/Issue: 0.5/1
7.3.2 Member synopsis

injected This function returns a value which defines the amount of charge which was
injected for the specified calibration data. This value is specified in units of DAC
counts. The relationship between DAC counts and charge is subsystem
dependent. If the amount of injected charge was determined from the LATC
database the constant UNDEFINED (see Section 5.3) is returned. This function has
no arguments and throws no exceptions.

delay This function returns a value which defines the time delay between the injection
of the charge and the TACK used to read out the corresponding calibration data.
This value is specified in units of LAT clock tics, where one tic is nominally 50
nanoseconds. If the delay was determined from the LATC database the constant
UNDEFINED (see Section 5.3) is returned. This function has no arguments and
throws no exceptions.

threshold This function returns a value which defines the charge threshold necessary to
cross in order to generate the specified calibration data. This value is specified in
units of DAC counts. The relationship between DAC counts and charge is
subsystem dependent. If the threshold was determined from the LATC database
the constant UNDEFINED (see Section 5.3) is returned. This function has no
arguments and throws no exceptions.

trigger This function returns a value which (in conjunction with the value below)
specified the discrimination threshold necessary to toggle the tracker’s
three-in-a-row signal sent to the GEM (see [22]). This value is specified in units of
DAC counts. The relationship between DAC counts and charge is subsystem
dependent. If the discriminated value was determined from the LATC database,
the constant UNDEFINED (see Section 5.3) is returned. This function has no
arguments and throws no exceptions.

from This method returns an object (see Section 5.6) which describes the channel(s)
enabled in the corresponding calibration data. The interpretation of channel
number is subsystem dependent. See Table 13 for the interpretation of a tracker
channel. This function has no arguments and throws no exceptions.

Table 13 Type definition for the channel class when used in an tracker calibration.

Member Interpretation

Range1

1. In decimal.

minimum maximum

single The channel number is represented in layer space. This chan-
nel is enabled in all layers, over all towers.

0 1535

all The channel number is represented in Front-End space. This
channel is enabled in all FEs, in all layers, over all towers.

0 63
page 66 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 8 Calorimeter calibration support Version/Issue: 0.5/1
Chapter 8

Calorimeter calibration support

8.1 Overview

The two classes described below are used to process the information returned from LCI when
calibrating the calorimeter. These classes are based on the classes described in Chapter 5. Each
time the calibration system (LCI) injects charge a corresponding event is generated. An event’s
information is encapsulated in the CalMetaEvent class (see Section 8.3). These calibration
events are contained in a series of datagrams, sent down to the ground on the science stream
(see [27]) by LCI. In order to process the events within any one datagram the user parses the
datagram using the CalParser described in Section 8.2.

8.2 Calorimeter Parser

The principal function of this class is to iterate over the a LCI datagram generated during an
calorimeter electronics calibration. In order to do so, the class defines three virtual methods
which must be satisfied by a derived class:

— Open, which is called once, before any events are parsed.

— Process, which is called for each event of the datagram and represents the work to
be performed by the derived class with respect to that event.

— Close, which is called once , after all events of the datagram have been parsed.

In short, three user methods are triggered: once at the beginning of the datagram, once at its
end, and once for every event in between. Each triggered method, is passing as an argument,
a reference to the appropriate information for that method (see Section 3.4 and Section 8.3).
Note that the parser processes events in the order in which they are stored in the datagram.

To initiate parsing the base class’s parse method is invoked (see Section 2.4). This method
takes as an argument a reference to the datagram to be parsed. Note, that the type identifier of
not for public release page 67

DataFlow Public Interface (DFI) Users Manual
Chapter 8 Calorimeter calibration support Version/Issue: 0.5/1
the datagram must correspond to an LCI datagram resulting from an calorimeter calibration. If
not, an exception is declared.

The definition for this class is contained in Listing 26:

8.2.1 Constructor synopsis

CalParser The constructor’s argument is a enumeration specifying the maximum level of
event data decompression supported by the parser. See Section 3.3 for
information on how this argument is used. If the parser cannot support the
specified decompression level the constructor will throw the exception specified
in Section 3.12.1.

8.2.2 Member synopsis

open This method will be called once per datagram. It is called immediately before any
events of the datagram are parsed (see below). The argument is a reference to an
object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was opened.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

process This method will be called for each event present in the parsed datagram. The
argument is a reference to an object which provides a description of the event to
be processed (see Section 8.3). Note, that the contents of this object reflect their
value at the time of the corresponding event. This function returns a boolean
specifying whether or not to abort parsing. If the function returns TRUE, parsing
continues. If the function returns FALSE, parsing aborts. When the parser aborts,
control is returned to the caller of the parse method. Note this function is pure
virtual and, therefore, its implementation must be provided by a derived class.
The function throws no exceptions.

Listing 26 Class definition for CalParser

1: class CalParser : public DfiEvent::Parser {
2: public:
3: CalParser(DfiEvent::Decompression);
4: public:
5: virtual ~CalParser();
6: public:
7: virtual bool open(const DfiEvent::Context&) = 0;
8: virtual bool process(const CalMetaEvent&) = 0;
9: virtual bool close(const DfiEvent::Context&) = 0;

10: };
page 68 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 8 Calorimeter calibration support Version/Issue: 0.5/1
close This method will be called once per datagram. It is called immediately after all (if
any) events of the datagram are parsed (see above). The argument is a reference
to an object which contains the datagram context (see Section 3.4). Note, that the
contents of this object reflect their value at the time of the datagram was closed.
This function returns a boolean specifying whether or not to abort parsing. If the
function returns TRUE, parsing continues. If the function returns FALSE, parsing
aborts. When the parser aborts, control is returned to the caller of the parse
method. Note this function is pure virtual and, therefore, its implementation
must be provided by a derived class. The function throws no exceptions.

8.3 Calorimeter Meta Event

A reference to an instance of this class is passed into the process method of the event parser
(described in Section 8.2). This method is called by the parser for each event contained within
a datagram. As the parser advances through a datagram’s events the contents of the meta
event are constantly changing to reflect their value for any, one, specified event. Note that this
class it is derived from the common event calibration class MetaEvent (see Section 5.4). In
order to go from a meta event to the event’s data, requires instantiating an Event (see
Section 5.4), passing as an argument an object of this class.

The definition for this class is contained in Listing 27:

Listing 27 Class definition for CalMetaEvent

1: class CalMetaEvent : public MetaEvent {
2: public:
3: CalMetaEvent(const _QSE_ctx*);
4: public:
5: ~CalMetaEvent();
6: public:
7: unsigned short uld() const;
8: unsigned short injected() const;
9: unsigned short delay() const;

10: unsigned short threshold() const;
11: CalTrigger trigger const;
12: Channel from const;
13: };
not for public release page 69

DataFlow Public Interface (DFI) Users Manual
Chapter 8 Calorimeter calibration support Version/Issue: 0.5/1
8.3.1 Constructor synopsis

CalMetaEvent From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

8.3.2 Member synopsis

uld This function returns a value which defines the threshold necessary to cross range
boundaries in the specified calibration data. This value is specified in units of
DAC counts. The relationship between DAC counts and charge is subsystem
dependent. If the threshold was determined from the LATC database the constant
UNDEFINED (see Section 5.3) is returned. This function has no arguments and
throws no exceptions.

injected This function returns a value which defines the amount of charge which was
injected for the specified calibration data. This value is specified in units of DAC
counts. The relationship between DAC counts and charge is subsystem
dependent. If the amount of injected charge was determined from the LATC
database the constant UNDEFINED (see Section 5.3) is returned. This function has
no arguments and throws no exceptions.

delay This function returns a value which defines the time delay between the injection
of the charge and the TACK used to read out the corresponding calibration data.
This value is specified in units of LAT clock tics, where one tic is nominally 50
nanoseconds. If the delay was determined from the LATC database the constant
UNDEFINED (see Section 5.3) is returned. This function has no arguments and
throws no exceptions.

threshold This function returns a value which defines the charge threshold necessary to
cross in order to generate the specified calibration data. This value is specified in
units of DAC counts. The relationship between DAC counts and charge is
subsystem dependent. If the threshold was determined from the LATC database
the constant UNDEFINED (see Section 5.3) is returned. This function has no
arguments and throws no exceptions.

trigger This method returns an object (see Section 8.4) which specifies the thresholds for
the calorimeter’s signals which are sent to the trigger system. This function has
no arguments and throws no exceptions.

from This method returns an object (see Section 5.6) which describes the channel(s)
enabled in the corresponding calibration data. The interpretation of channel
number is subsystem dependent. See Table 14 for the interpretation of an
calorimeter channel. This function has no arguments and throws no exceptions.
page 70 not for public release

DataFlow Public Interface (DFI) Users Manual
Chapter 8 Calorimeter calibration support Version/Issue: 0.5/1
8.4 Calorimeter Trigger Discriminators

An instance of this class is returned from the calorimeter’s meta event (see Section 8.3). This
class specifies the values of the discriminators which specify the threshold for the production
of the trigger signals generated by the calorimeter and used by the trigger system

The definition for this class is contained in Listing 28:

8.4.1 Constructor synopsis

CalTrigger From the user’s viewpoint the argument to this constructor is irrelevant and
should be ignored. However, its definition is given here for completeness. The
argument is a reference to a structure which allows the class to locate within the
datagram, the meta-data necessary to construct an object of this class. The
constructor throws no exceptions.

Table 14 Type definition for the channel class when used in a calorimeter calibration.

Member Interpretation

Range1

1. In decimal.

minimum maximum

single The channel number is represented in channel space. This
channel is enabled in all layers, over all towers.

0 11

all All channels in all FEs are enabled, in all layers, over all tow-
ers.

N/A N/A

Listing 28 Class definition for CalTrigger

1: class CalTrigger {
2: public:
3: CalTrigger(const _QSE_ctx*);
4: public:
5: ~CalTrigger();
6: public:
7: unsigned short le() const;
8: unsigned short he() const;
9: };
not for public release page 71

DataFlow Public Interface (DFI) Users Manual
Chapter 8 Calorimeter calibration support Version/Issue: 0.5/1
8.4.2 Member synopsis

le This function returns a value which specifies the discrimination threshold
necessary to toggle the calorimeter’s Low Energy trigger signal sent to the GEM
(see [22]). This value is specified in units of DAC counts. The relationship between
DAC counts and charge is subsystem dependent. If the discriminated value was
determined from the LATC database, the constant UNDEFINED (see Section 5.3) is
returned. This function has no arguments and throws no exceptions.

he This function returns a value which specifies the discrimination threshold
necessary to toggle the calorimeter’s High Energy trigger signal sent to the GEM
(see [22]). This value is specified in units of DAC counts. The relationship between
DAC counts and charge is subsystem dependent. If the discriminated value was
determined from the LATC database, the constant UNDEFINED (see Section 5.3) is
returned. This function has no arguments and throws no exceptions.

8.5 Exceptions

8.5.1 Decompression Failed

to be written.
page 72 not for public release

	DataFlow Public Interface (DFI)
	Abstract
	Intended audience
	Conventions used in this document
	References
	Document Control Sheet
	Document Status Sheet
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Chapter 1 Introduction
	Chapter 2 The DataFlow Interface
	2.1 Overview
	2.2 Name space - Dfi
	2.3 Datagram
	2.3.1 Constructor synopsis
	2.3.2 Member synopsis

	2.4 Datagram Parser
	2.4.1 Constructor synopsis
	2.4.2 Member synopsis

	2.5 Exceptions
	2.5.1 Invalid Datagram Type
	2.5.2 Invalid Datagram Structure

	Chapter 3 The Event support package
	3.1 Overview
	3.2 Name space - DfiEvent
	3.3 Event Parser
	3.3.1 Constructor synopsis
	3.3.2 Member synopsis

	3.4 Context
	3.4.1 Constructor synopsis
	3.4.2 Member synopsis

	3.5 Run Information
	3.5.1 Constructor synopsis
	3.5.2 Member synopsis

	3.6 Open Information
	3.6.1 Constructor synopsis
	3.6.2 Member synopsis

	3.7 Close Information
	3.7.1 Constructor synopsis
	3.7.2 Member synopsis

	3.8 Scalers
	3.8.1 Constructor synopsis
	3.8.2 Member synopsis

	3.9 Time Tone
	3.9.1 Constructor synopsis
	3.9.2 Member synopsis

	3.10 Meta Event
	3.10.1 Constructor synopsis
	3.10.2 Member synopsis

	3.11 GEM Time
	3.11.1 Constructor synopsis
	3.11.2 Member synopsis

	3.12 Exceptions
	3.12.1 Decompression not supported

	Chapter 4 The LPA support package
	4.1 Overview
	4.2 Name space - DfiLpa
	4.3 Event Parser
	4.3.1 Constructor synopsis
	4.3.2 Member synopsis

	4.4 Meta Event
	4.4.1 Constructor synopsis
	4.4.2 Member synopsis

	4.5 Event
	4.5.1 Constructor synopsis
	4.5.2 Member synopsis

	4.6 Event Handlers
	4.6.1 Constructor synopsis
	4.6.2 Member synopsis

	4.7 Gamma Handler
	4.7.1 Constructor synopsis
	4.7.2 Member synopsis

	4.8 Event Handler
	4.8.1 Constructor synopsis
	4.8.2 Member synopsis

	4.9 Exceptions
	4.9.1 Decompression Failed

	Chapter 5 LCI support
	5.1 Overview
	5.2 Name space - DfiLci
	5.3 Constants
	5.4 Meta Event
	5.4.1 Constructor synopsis
	5.4.2 Member synopsis

	5.5 Event
	5.5.1 Constructor synopsis
	5.5.2 Member synopsis

	5.6 Channel
	5.6.1 Constructor synopsis
	5.6.2 Member synopsis

	Chapter 6 ACD calibration support
	6.1 Overview
	6.2 ACD Parser
	6.2.1 Constructor synopsis
	6.2.2 Member synopsis

	6.3 ACD Meta Event
	6.3.1 Constructor synopsis
	6.3.2 Member synopsis

	6.4 ACD Trigger Discriminators
	6.4.1 Constructor synopsis
	6.4.2 Member synopsis

	Chapter 7 Tracker calibration support
	7.1 Overview
	7.2 Tracker Parser
	7.2.1 Constructor synopsis
	7.2.2 Member synopsis

	7.3 Tracker Meta Event
	7.3.1 Constructor synopsis
	7.3.2 Member synopsis

	Chapter 8 Calorimeter calibration support
	8.1 Overview
	8.2 Calorimeter Parser
	8.2.1 Constructor synopsis
	8.2.2 Member synopsis

	8.3 Calorimeter Meta Event
	8.3.1 Constructor synopsis
	8.3.2 Member synopsis

	8.4 Calorimeter Trigger Discriminators
	8.4.1 Constructor synopsis
	8.4.2 Member synopsis

	8.5 Exceptions
	8.5.1 Decompression Failed

