
XML for Detector Description at GLAST1

J. Bogart (SLAC, Menlo Park)
D. Favretto, R. Giannitrapani (Università di Udine, Udine)

Abstract
The problem of representing a detector in a form which is accessible to a variety of

applications, allows retrieval of information in ways which are natural to those applications,
and is maintainable has been vexing physicists for some time. Although invented to address
an entirely different problem domain, the document markup meta-language XML is well-
suited to detector description. This paper describes its use for a GLAST detector.[7]

Keywords: detector, GLAST, XML

1 Introduction

For any experiment an accurate description of its apparatus is essential. Some features of HEP
experiments make this goal especially difficult to achieve:
• Detectors are large and complex.
• Experiments tend to be long-lived. Meanwhile prototypes, actual and simulated, must

be supported; production detectors undergo upgrades; software technology evolves.
• Several applications need access to the detector description.

Hence the scheme used for detector description must be flexible and versatile. Any information
potentially of interest to more than one application, in particular all geometric parameters and
relationships, must exist as data, not code.

1.1 XML

XML[5] was originally intended as a means of designing web document types so that any part
of the content of the document, not just formatting information, could be tagged and thus
made readily available to programs. However, it quickly became clear that such “documents”
could include databases or structured messages as well as more typical document content. As a
result of its wide appeal, including many commercial applications, high-quality tools for XML
soon became available and continue to evolve rapidly. XML is not only a suitable vehicle for
detector description now, but is well-supported and likely to remain so for years to come. It is
therefore not surprising that XML has gained broad popularity in the HEP community; many
experiments have adopted it as their geometry persistency mechanism2

1.2 GLAST LAT Specifics

Our task is to provide a description for the Large Area Telescope (LAT), the primary instrument
of the two composing the GLAST observatory scheduled for launch in 2006. It is a small,
relatively simple HEP detector designed to detect gamma rays over a large energy range. Active
volumes are practically all boxes, channel counts in two of three subdetectors are modest, and
tolerances are generally less stringent than for large HEP experiments.

In other respects the LAT detector and the environment in which its software is being
developed are typical of HEP. The usual collection of programs—simulation, reconstruction,
calibration procedures, etc.—are all necessary. Most are C++ applications being structured
using the Gaudi framework which must run on multiple platforms (Windows, Linux, Solaris).
The architecture must support laptops disconnected from the net as well as less constrained
computing environments. Tools have to survive for the lifetime of the project, at least a decade.

1Work supported by the Department of Energy, contract DE-AC03-76SF00515
2In the last two years three specialized workshops have been dedicated to discuss this topic among different

experiments; see, for example [3].



2 Implementation

There are three major pieces to our XML description schema, currently implemented as a DTD
known as GDD, and to the software interpreting it. At its heart is a method for describing
geometric solids and their relative positions. The second piece, a mechanism for definition,
manipulation and substitution of symbolic constants, was designed to aid in maintenance and
comprehensibility of the geometry description. Finally, to divorce all potentially shared parts
of detector description from any single application, GDD includes facilities to define and ma-
nipulate identifiers associated with parts of the detector.

2.1 XML Parser

We use facilities of XML to enforce constraints on the detector description whenever possible,
hence we need a validating parser. It must be compatible with C++ since vital applications
such as simulation are written in C++. Furthermore, parser support for the Document Object
Model (DOM)[2] interface saves us from having to design our own generic XML in-memory
representation3. We have chosen the open-source Xerces-c parser[4]. It has all required features,
and additionally has a large, supportive community of users and developers.

2.2 Geometry

2.2.1 XML description

The plethora of possible clients of the GLAST geometry has lead to a quite general design for
those XML elements in GDD dedicated to geometry, mainly inspired by AGDD[6], the ATLAS
DTD, which in turn owes much to simulators such as GEANT.

The DTD defines volumes and positioning elements. Volumes may be geometric primi-
tives, like boxes or tubes, or composites constructed of several other (primitive or composite)
volumes, nested to arbitrary depth. Positioning elements describe the relative positions of child
volumes within their parent.

2.2.2 detModel and clients

In order to isolate client applications from XML itself, we have developed a C++ layer called
detModel, a class hierarchy used by GLAST applications to access the geometry description of
the detector stored in an XML file. Any software component needing geometrical information
accesses it via detModel; the details of the XML description and the parser interface are hidden.

To develop this package, our analysis started from GDD and its hierarchical structure.
XML is not object oriented, but there is a natural mapping from GDD elements to classes
connected by “has-a”, “is-a” and “use-a” relations, suggesting a possible hierarchy for these
classes. This internal structure is quite independent of client nature and access, for which we
have added a series of management classes and query functionalities on the geometric hierarchy.
From the start we have tried to implement a certain degree of modularity; in this way every
client can instantiate and access only the part of GDD that it really needs.

Throughout the design and implementation of detModel we used design patterns [1]
extensively. In particular the manager class GDDmanager, the gateway to the full hierarchy, is a
singleton; moreover we have separated the construction of the geometry representation from the
representation itself by adopting a builder pattern. In this way, for example, we have decoupled
detModel (and all its clients) from the specific XML parser used, leaving open the option to
change it in future. We also adopted the visitor pattern as the basic mechanism for accessing the
full hierarchy; every client needs only to implement a concrete visitor, implementing whatever

3A larger experiment might balk at the memory usage of the DOM, but it is unlikely to be an issue for us.



functionalities it requires. For clients that do not need to access the full hierarchy, but only a
part of it we have also implemented some basic direct query mechanisms.

With both the visitors mechanisms and the direct query methods of the GDDmanager
public interface it is quite easy to quickly implement specific requirements for a broad collec-
tion of clients. We have already developed a VRML client for graphical representation of the
geometry, a GEANT4 client that can use detModel to instantiate the geometry in the Monte
Carlo simulation (including sensitive detector information contained in GDD) and a prototype
ROOT visitor to access the geometric information of GLAST inside analysis and event display
programs. See [8] for sample images produced by these clients. For the future we are working
on a HepRep client of detModel for some possible links with WIRED and JAS clients and a
GISMO client (the Monte Carlo toolkit currently used by the GLAST collaboration).

2.3 Constants

In describing even a relatively small detector like the LAT naively with XML, one soon mourns
the absence of standard conveniences, such as support for constant names and arithmetic.
Dimensions are often repeated; offsets are commonly calculated from other values. If all such
values are entered as literal constants the description quickly becomes unmaintainable.

2.3.1 XML definitions

Although XML has no built-in arithmetic one can define elements to specify the arithemetic
to be done by co-operating applications. We define XML elements for “primary” and “de-
rived” constants, for references to constants, and for standard arithmetic operations. Primary
constants have only a name, a value, type information, and a descriptive comment. Derived
constants may have element content consisting of arithmetic elements and references to other
constants. Other XML elements, such as those describing volumes of a particular shape, have
been modified to accept either a literal value for, e.g., a radius, or a reference to a constant.
Constant names are IDs in the XML sense and references to them are IDREFs, so validating
parsers enforce uniqueness of such names and verify that all references resolve properly.

2.3.2 Supporting software

Utility C++ classes have been written to evalute derived constants, optionally replacing their
element content with a value attribute, and to substitute a value for a reference to a constant,
doing the evaluation first if necessary. These utilities may be invoked directly by programs such
as Simulation. A stand-alone program using these utilities takes an arbitrary XML document
as input and outputs an equivalent document with all expressions evaluated and all references
replaced with values. For production running this preprocessing saves resources, most notably
the memory required for the DOM representation, which is considerably smaller and less nested
for the preprocessed document.

The constants have interest in their own right, both to programs which need access to a
particular parameter apart from the complete geometry description, and to humans in search
of a reliable source of documentation. C++ classes have been written to “serve” the constants
via both visitor and query interfaces, as has a stand-alone visitor client which produces html
tables of constants, readily accessible to the full collaboration for review.

2.4 Identifiers

Several clients of detector description need a way to identify individual volumes, both for
internal use and to label information, such as hits, which may be generated by one application
and read by another. No single labeling scheme can gracefully accomodate all clients. An



analysis client may only be concerned with read-out volumes whereas Simulation must be aware
of all volumes. GDD supports multiple labelings and, where feasible, transforms between them.

2.4.1 XML definitions

Positioning elements may include an idField, which is composed of a fieldname and value. An
identifier for a volume is the concatenation of the values of its own and ancestor idFields.

In order to validate an identifier or manipulate identifiers as a group, we use an identifier
dictionary.4 A dictionary specifies legal sequences of fieldnames and constraints on values
in a particular context. Dictionaries may be used to constrain sets of identifiers (such as
readout identifiers) other than those coming from positioning elements. Conversions taking
identifiers from one dictionary to another are specified using an id converter. Values occurring
in dictionaries or converters can be literals or references to be resolved by substitution.

2.4.2 Supporting software

GDD imposes a hierarchical structure on the set of identifiers belonging to a given dictionary,
but does not enforce certain uniqueness properties. Id dictionary classes have a validation
function to ensure, e.g., that any allowed sequence of field values has a uniquely-associated
sequence of fieldnames. Individual identifiers may be checked for consistency with a dictionary.

3 Status and Conclusions

The current description of the LAT using GDD, including a compatible id dictionary, describes
all active and some structural components. Remaining components will be added as needed.
Except for id conversion, all fundamental services needed to interpret a GDD document have
been implemented. Several key clients are up and running; others are in the works.

As the LAT description grows in size and complexity, we need to monitor potential re-
source bottlenecks, particularly memory. Maintenance of the description files is more immedi-
ately troublesome. The ID/IDREF mechanism is heavily used in GDD, which leads to problems
in name selection and management: ID values must be a unique within the document. A move
to XML Schema, a newer alternative to DTDs, would help.5 GDD documents are fragile in the
sense that small change in the design of the detector can entail large changes in the document.
However, if the information in the document were kept in code instead such changes would be
significantly more disruptive. In summary, using XML to describe detectors, while not ideal,
appears to be workable, and probably significantly superior to older technologies.

References

[1] E.Gamma et.al, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley 1994

[2] DOM Level 2 Core Specification, http://www.w3.org/TR/DOM-Level-2-Core/
[3] HEP Detector Description Workshop (CERN), http://doc.cern.ch/age?a01380
[4] Xerces C++ Parser http://xml.apache.org/xerces-c/index.html
[5] XML 1.0 Specification, http://www.w3.org/TR/REC-xml
[6] http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/detector_description/
[7] http://www-glast.stanford.edu/mission.html
[8] http://www.fisica.uniud.it/~riccardo/research/glast/gallery

4The concept and name are due to members of the ATLAS AGDD Working Group.
5XML Schema has other advantages which space does not permit us to describe.


