1.1 Physics Event Data

Event data collected by the LAT Physics Acquisition (LPA) application during planned physics observations and unplanned GRB observations is transmitted to the science data partition on the SSR as CCSDS packets that wrap records in LAT Science Format (LSF).

The FSW can be commanded to store physics data at various levels of compression. LPA may compress data, but it never summarizes or discards any data delivered by the various LAT subsystems (ACD, TKR, CAL). Regardless of the format and compression level of the data they encapsulate, all data packets contain the complete set of event data assembled by the LAT Event Builder Module for events which have passed the filtering process.

An event is included in the data stream if any of the event data handlers active in the current data collection mode “accept” that event. For instance, if both a gamma filter and a heavy ion/CNO filter are active in PHYSICS mode, if the event passes the CNO filter but is rejected by the gamma filter, the event is still put into the data stream. As described later in this section, for each event put into the data stream, FSW adds summary bits summarizing how each active handler evaluated that event. In our example, the event passed by the CNO filter would contain a summary explaining why the event was rejected by the gamma filter.

The event data stream contains marker events that allow the beginnings and ends of data collection runs to be clearly identified. At the commanded start and stop of data collection, FSW configures the GEM to broadcast a customized Trigger Accept Message containing a marker value in response to a solicited trigger, and then issue the solicited trigger . The GEM data block in each event records the use of the solicited trigger and the start or stop marker value.

In addition to the event data itself, physics event data packets also contain “auxiliary data”, which, at a minimum, consists of mission elapsed time and GEM clock counter data, and configuration keys (which can be used to identify the pedestal/gain, filter geometry, software configuration, and
 other configuration files that were utilized to support the collection and packaging of the event data). Finally, when data is requested with the highest level of statistical compression, the physics event data stream also contains the compression tables required to uncompress the data.

This section of the ICD describes how event data, at whatever level of compression, is packaged and delivered by FSW to the Solid State Recorder. Downstream consumers of event data will not be exposed to the data in the structure in which it is stored on the SSR. The FSW Team provides tools to unpack and process the data delivered by the MOC and deliver the physics data sets to downstream consumers in formats that are most convenient to them.

1.1.1 Compression of Physics Event Data

FSW provides a continuum of event data compression:

· Level 0 Compression: Uncompressed data

· Level 1, 2, 3, 4, 5 Compression: Structurally compressed data

· Level 6, 7 Compression: Reserved for future use.

· Level 8 Compression: Algorithmically compressed data

Operators request a level of compression for data delivered during a run. FSW then delivers events at the requested compression, until an event is encountered that cannot be compressed at the desired level due to structural errors, at which point FSW backs down to the next “lower” level of compression and attempts to deliver the event again. This process continues until the best possible compression for the current event is achieved. Events that simply cannot be compressed are transmitted “as is”. This process yields an event data stream containing a mixture of event data at different levels of compression; the great bulk of the event data records are compressed at the requested level, with occasional records, marked as distinct LSFcontributions, appearing in the stream at lower levels of compression.

The default compression level is specified in the LPA configuration instance selected by the operator in the LPASTART telecommand. In B1-0-6, this default is compression level 8. See Error! Reference source not found. on page Error! Bookmark not defined. for a description of the parameters in LPA_DB configuration files. The default compression level can be overridden between runs using the LPASETCOMPRESS telecommand.
1.1.2 Segmentation of Physics Event Data

On each CPU, FSW processes data and assembles a self-contained packet (an LSFdatagram) of a configurable size, currently 64 Kbytes. 64 Kbytes is an optimum size chosen based on several considerations, the most important being the amount of data that can be lost (if the datagram cannot be properly constructed or closed due to data corruption, transport errors, etc) without serious effects on downstream science processing.

Data within this datagram is organized into LSFcontributions, the format and structure of which are described in the next section.

The 64 Kbyte LSFdatagram cannot be transmitted to the SSR in one piece; the LAT Communications Board limits the maximum size of data transfers to 4 Kbytes. Thus, assuming the datagram is configured to be 64 Kbytes in size, FSW segments the datagram into a maximum of 16 CCSDS packets for transport to the Recorder. This data segmentation is depicted schematically in Figure 1 below. Sequence flags in CCSDS headers are used to identify the series of CCSDS packets containing a physics datagram; physics datagrams never span CCSDS packet sequences.

	Figure 1: Segmentation of Physics Event Data into Telemetry

	
[image: image1.emf]LSFdatagram

LSFcontribution

LSF Records

(Event Data)

LSFcontribution

LSF Records

(Event Data)

LSFcontribution

LSF Records

(Event Data)

LSFcontribution

LSFcontribution

LSF Records

(Event Data)

64 Kbytes

(configurable)

CCSDS Packet

#1

CCSDS Packet

#2

CCSDS Packet

#3

CCSDS Packet

#4

CCSDS Packet

#5

CCSDS Packet

#6

CCSDS Packet N

4 Kbytes

(max)

padding

padding

padding

padding

padding

padding

padding

'first' packet in

CCSDS

sequence

(flag=01)

'last' packet in

CCSDS

sequence

(flag=10)

Internal LSF headers appear in the data stream aligned on a 32 bit boundary. Only the initial CCSDS packet is guaranteed to begin with an LSF header.

1.1.3 LSFContributions in Physics Event Data

In physics event data, the root field of the LSFdatagram header is always set to TRUE, meaning the datagram begins with a ROOT data area. In physics data, an LSFcontribution is one of the following:

· Public Context Record. This type of LSFcontribution, which appears in the ROOT area, contains the observation “start” time (in seconds of mission elapsed time, see Section Error! Reference source not found. on page Error! Bookmark not defined.), hardware counter extensions, FSW/instrument mode flags, and a variety of sequence numbers and identifiers to uniquely identify the LSFdatagram during later storage, retrieval, and processing on the ground. This LSFcontribution is described in more detail in Section 1.1.4. Whenever the event data handler configuration and/or LAT observation mode change
, a new LSFdatagram is opened and a new Public Context Record is inserted into the data stream.

· Private
 Context Record
. This type of LSFcontribution appears in the ROOT area. Whereas the Public Context Record contains data used for identification and sorting of event data for any run, the Private Context Record contains information that is more specific to the data collected on a specific run. For instance, this record contains a list of keys identifying the configurations (e.g., secondary boot script, LPA software configuration, LATC instrument configuration, and a timestamp indicating the time of the last time the instrument configuration was verified) that were used to support the collection of the event data. This LSFcontribution is described in more detail in Section 1.1.4. Again, whenever the event data handler configuration and/or LAT observation mode change, a new LSFdatagram is opened and a new Private Context Record is inserted into the data stream.

· Process Private Record. This type of LSFcontribution appears in the ROOT area. It contains any data required to reconstruct and/or uncompress event data. In B1-0-6, if CAL or ACD pedestal values are applied to adjust the instrument, this contribution contains the identifiers of the onboard files containing the pedestal values. In addition, this contribution contains an identifier for the Tracker configuration database file used to identify Tracker splits and dead strips; again, this data is required to decompress the data. In B1-0-6, if event data were packaged with Level 8 compression, this contribution also contains a portion of the data extracted as part of the compression process. This LSFcontribution is described in more detail in Section 1.1.4.3 on page 3.

· Event Data Block. A block containing instrument data for one or more events. The event data delivered by the EBM contains data from each of the LAT’s contributing detector subsystems: AEM, GEM, and 16 TEMs. Event data records within this LSFcontribution are packaged at some level compression along the continuum described in Section 1.1.1. Typically, Event Data Blocks are a mixture of structurally compressed event data records and algorithmically compressed event data records. See Section 1.1.5 on page 3.

· Time Update Record. At each 1-PPS signal from the Spacecraft, this type of LSFcontribution is inserted into the event data stream if errors in timekeeping are detected. Time Update Records always contain the current value of the GEM 1-PPS register at the strobe, and may include error flags to indicate whether the Spacecraft or the FSW (or both) encountered an error delivering drift-corrected mission elapsed time. See Section 1.1.6 on page 3.
	Figure 2: Sample LSFDatagram (Event Data)

	
[image: image2.emf]LSFdatagram Identity

LSFdatagram Length

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

Alg. Compressed Event Data

Datagram Identifier (DID)

Public

Context Record

(Full format)

Extended Counter Record (XCR)

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

Raw Event Data

…..

.

Beginning of an

Event Data Block

(series of LSFrecords)

LSFdatagram Indentity

LSFdatagram Length

Initial Time Records

(previous and current Timetone messages)

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

Private

Context Record

Configuration Keys

EDS Configuration (Event Handler Configs)

…..

.

ROOT

New datagram:

* Previous datagram reached size

limit OR

* Event handler configuration and/or

observation mode changed

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

CAL and ACD pedestal data IDs

Common Level 8 (de)compression data

Process Private

Record

Tracker Configuration Database ID

1.1.3.1 LSF TypeIDs and Version for LSFContributions in Physics Event Data

The LSFdatagram
 header for physics event datagrams and each of the various LSFcontributions described in Section Error! Reference source not found. contain an Identity field, which is broken down into a TypeID and a Version sub-field. FSW uses one type of LSFdatagram for physics event data, with TypeID 0xF0200.

Table 1 lists the LSF TypeID and Version for each LSFcontribution included in the physics event data stream.

	Table 1: LSF TypeIDs and Versions for LSFcontributions in Physics Event Data

	LSF TypeID
	LSF
Version
	Description
	Comments

	0xF0210
	0
	Public Context Record
(full format)
	This version of the Public Context contribution is used when either the Spacecraft or FSW report that the mission elapsed time from the current TIMETONE message was delivered with errors.

See Section 1.1.4.

	0xF0211
	0
	Public Context Record (abbreviated format)
	This version of the Public Context contribution is used when neither the Spacecraft nor FSW have detected errors in time data.

See Section 1.1.4.

	0xF0100
	0
	Private Context Record
	The Private Context contribution contains the database keys for LPA software configuration, LATC instrument configuration (and time of last LATC verification), and secondary boot script, the choice of which affect the FSW configuration for physics data collection. This record also includes a record of which event data handlers were active when the events in this datagram were collected.

See Section 1.1.4.

	0xF0
101
	0
	Process Private Record
	Level 8 compression involves extracting information common across and derived from the GEM, AEM, and TEM contributions and adding a single instance of the shared data to the data stream. This common information is output in the Process Private Record.

This contribution also contains identifiers for configuration files containing CAL and/or ACD pedestal data values, if pedestals are used. These values must be added back to reconstruct the events in this datagram. See Section Error! Reference source not found. on page Error! Bookmark not defined..

This contribution also contains an identifier for the Tracker configuration database (TCC_DB file) used to identify splits and bad strips. See Error! Reference source not found. on page Error! Bookmark not defined..

See Section 1.1.4.3 on page 3.

	0xF0102
	0
	Time Update Record
(full format)
	The full Time Update Record is inserted into the data stream on receipt of the 1-PPS signal if the Spacecraft or FSW signal that time taken from the TIMETONE has been extrapolated (without drift correction from the GPS network) or is suspect in some other way.

See Section 1.1.6.

	0xF0103
	0
	Time Update Record (abbreviated format)
	The abbreviated Time Update Record is inserted into the data stream on receipt of the 1-PPS signal if FSW determines that the current and previous 1-PPS signal are not separated by precisely one second.

See Section 1.1.6.

	0xF0104
	0
	Event Data Block

	See Section 1.1.5.

1.1.4 The Context Records

The Context Records, as their name implies, describe the instrument and FSW context/state during which physics event data is collected.

1.1.4.1 Public Context Record

The Public Context Record is included in one of two forms, Full or Abbreviated. Full records are inserted when either the Spacecraft or the FSW have signaled that the mission elapsed time in the TIMETONE message is suspect.

Public Context Record: Contribution Header

In either full or abbreviated Public Context Records, the Bridge field in the LSFcontribution header has a special use, containing an open field (4 bits) to record the reason the LSFdatagram is opened or resumed (operator command to begin a data collection run, autonomous repoint command, continuation of a previously-started run), and a close field (4 bits) to record the reason the datagram was closed. The values for the open and close fields are listed in Table 2 below.

	Table 2: Values of Open and Close Field in the LSFDatagram Headers of Event Datagrams

	DID Field
	Value
	Description
	Comments

	Open
	0x0
	OPEN_K_START
	The datagram was opened at the start of a physics data collection run, in response to the LPASTART telecommand.

	
	0x1
	OPEN_K_START_OP
	The datagram was opened at the start of a calibration data collection run, in response to the LCICALIBRATE command.

	
	0x2
	OPEN_K_START_AUTO
	Not used.

	
	0x3
	OPEN_K_START_3
	Not used.

	
	0x4
	OPEN_K_RSVD_4
	Reserved.

	
	0x5
	OPEN_K_RSVD_5
	Reserved.

	
	0x6
	OPEN_K_RSVD_6
	Reserved.

	
	0x7
	OPEN_K_RSVD_7
	Reserved.

	
	0x8
	OPEN_K_RESUME
	This datagram was opened on resumption of a normal physics data collection run after completion of a TOO or ARR.

	
	0x9
	OPEN_K_RESUME_OP
	Not used.

	
	0xA
	OPEN_K_RESUME_AUTO
	Not used.

	
	0xB
	OPEN_K_AUTO
	Not used.

	
	0xC
	OPEN_K_AUTO_MODE
	Not used.

	
	0xD
	OPEN_K_AUTO_TIME
	Not used.

	
	0xE
	OPEN_K_AUTO_COUNT
	Not used.

	
	0xF

	OPEN_K_AUTO_FULL
	The datagram was opened because the previous datagram had reached the size limit.

	Close
	0x0
	CLOSE_K_STOP
	The datagram was closed at the end of a physics data collection run, in response to the LPASTOP telecommand. Or, the datagram was closed at the end of calibration data collection run at the normal termination of the run.

	
	0x1
	CLOSE_K_STOP_OP
	No used.

	
	0x2
	CLOSE_K_STOP_TIME
	Not used.

	
	0x3
	CLOSE_K_STOP_COUNT
	Not used.

	
	0x4
	CLOSE_K_STOP_ABORT
	Not used.

	
	0x5
	CLOSE_K_STOP_ABORT_OP
	The calibration datagram was closed after the operator aborted the calibration data collection run.

	
	0x6
	CLOSE_K_STOP_ABORT_AUTO
	Not used.

	
	0x7
	CLOSE_K_RSVD_7
	Not used.

	
	0x8
	CLOSE_K_PAUSE
	Not used.

	
	0x9
	CLOSE_K_PAUSE_OP
	Not used.

	
	0xA
	CLOSE_K_PAUSE_AUTO
	Not used.

	
	0xB
	CLOSE_K_AUTO
	The datagram was closed at the end of one calibration data collection cycle.

	
	0xC
	CLOSE_K_AUTO_MODE
	The datagram was closed as a result of an automatic observation mode change in response to a TOO or ARR.

	
	0xD
	CLOSE_K_AUTO_TIME
	Not used.

	
	0xE
	CLOSE_K_AUTO_COUNT
	Not used.

	
	0xF
	CLOSE_K_AUTO_FULL
	The datagram closed because the size limit as reached.

Public Context Record (Full
): Contribution Body

The body of the Full version of the Public Context Record consists of a fixed-size DatagramID, a fixed-size Extended Counter Record, and two fixed-size Initial Time Records.

The DatagramID
 contains an origin field (4 bits) identifying the source of the event data (on-orbit LAT, pre-launch LAT, GLEAM simulation, etc); a CPU field (4 bits) to identify the CPU that transmitted the data; a runID field (24 bits) to uniquely identify the data collection run; a mode field (4 bits) reporting the observation mode (PHYSICS mode, TOO mode, ARR mode) in which the data in this datagram was collected; a change field
 (8 bits) counting changes in observation mode/filter configuration since the beginning of the run; a datagram sequence counter (20 bits); a starttime field
 (32 bits) recording the time (to the nearest second of mission elapsed time, Spacecraft epoch) of the start of the collection run. The values taken by the origin, CPU, and mode fields are listed in Table 3 on page 3.

Several of these quantities are set when the operator initiates a data collection run using the LPASTART telecommand (APID 1652, fc 1). The runID field records the run identifier passed in the LPASTART command. The runID and starttime fields are correlated. The starttime remains constant across datagrams, even across ARR or TOO events, until the run is terminated by the operator using the LPASTOP telecommand (APID 1652, fc 3). Changes to the event processor configuration and/or changes in observation mode during the run are counted in the change field. When the run is terminated, the change field and datagram sequence count are reset to zero in preparation for the next observation.
The Extended Counter Record contains 6 16 bit fields to extend the GEM elapsed clock, livetime clock, prescaled counter, discarded counter, sequence counter, and deadtime counter. When FSW starts a new data collection run, it zeroes out these counter extensions.

The Initial Time Records report the following information with respect to the first event that appears in the datagram (at T-1 and T-2 seconds):

· The 32-bit contents of the GEM 1-PPS register: a 1-PPS counter (7 bits) and the GEM clock/timebase value, in system clock units of 50 nanoseconds (25 bits). See [30].

· A copy of the GEM 1-PPS register value. [Note: In B1-0-6, both GEM 1-PPS register fields have the same value. The second value is included in case time error detection and handling are enhanced in future Releases].

· The 32-bit mission elapsed time in seconds (Spacecraft epoch).

· The Spacecraft Timetone error flags (16 bits). Indicator flags (per [43]). Bit 0 is least significant bit. Bit 0 - IS_SOURCE_GPS equals one (1) when GPS is the source for drift correction; otherwise zero (0).

· The FSW Timetone error flags (16 bits).

The detailed layouts of the full Public Context Record are specified in the Doxygen pages for the LSE package. See http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSE/V1-3-4/rad750/lsew/dox/html/union__LSE__etxCtb.html
.

Public Context Record (Abbreviated
): Contribution Body

The body of the Abbreviated version of the Public Context Record is similar to the Full version, consisting of a DatagramID, Extended Counter Record, the contents of the GEM 1-PPS register at T-1 and T-2 seconds before the first event in the datagram, and the mission elapsed time. The Abbreviated version uses the same LSFdatagram header as the Full version, with the same enumeration of open and close values given in Table 2 on page 3.

The detailed layouts of the abbreviated Public Context Record are specified in the Doxygen pages for the LSE package. See http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSE/V1-3-4/rad750/lsew/dox/html/union__LSE__etxCtb.html.
Origin, CPU, and Mode Fields in Public Context Records

Table 3 below summarizes the values that can be reported in the origin, CPU, and mode fields of the DatagramID block of both Full and Abbreviated Public Context Records.

Also see the Doxygen pages for the LSE package, in particular, http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSE/V1-3-4/rad750/lsew/dox/html/struct__LSE__did__pid__bf.html

	Table 3: Values of Origin, CPU, and Mode Fields in the DatagramID Block

	DID Field
	Value
	Description
	Comments

	Origin
	0x0
	ON_ORBIT
	This event datagram was generated on the orbiting LAT.

	
	0x1
	GLEAM
	This event datagram was generated using GLEAM-generated events.

	
	0x2
	PRELAUNCH
	This event datagram was generated during Integration and Test activities.

	
	0x3
	RSVD
	Reserved.

	
	0x4
	RSVD
	Reserved.

	
	0x5
	RSVD
	Reserved.

	
	0x6
	RSVD
	Reserved.

	
	0x7
	RSVD
	Reserved.

	CPU
	0x0
	EPU_0
	This event datagram was generated by EPU0.

	
	0x1
	EPU_1
	This event datagram was generated by EPU1.

	
	0x2
	EPU_2
	This event datagram was generated by EPU2.

	
	0x3
	SIU_0
	This event datagram was generated by SIU0.

	
	0x4
	SIU_1
	This event datagram was generated by SIU1.

	
	0x5
	AUX
	(Not used). This event datagram was generated by the AUX crate (I&T only)

	
	0x6
	MIXED
	(Not used). This event datagram contains events from a mixture of CPUs.

	
	0x7
	RSVD_7
	Reserved

	
	0x8
	TB_EPU_0
	This event datagram was generated by Testbed EPU0

	
	0x9
	TB_EPU_1
	This event datagram was generated by Testbed EPU1

	
	0xA
	TB_EPU_2
	This event datagram was generated by Testbed EPU2

	
	0xB
	TB_SIU_0
	This event datagram was generated by Testbed SIU0

	
	0xC
	TB_SIU_1
	This event datagram was generated by Testbed SIU1

	
	0xD
	TB_AUX
	This event datagram was generated by Testbed AUX crate

	
	0xE
	HOST
	This event datagram was generated by Testbed host machine

	
	0xF
	RSVD_F
	Reserved

	Mode
	0x0
	NORMAL
	This event datagram contains events collected in NORMAL (PHYSICS) mode.

	
	0x1
	TOO
	This event datagram contains events collected in TOO mode.

	
	0x2
	GRB0
	This event datagram contains events collected in ARR-GRB0 (GRB suspected) mode.

	
	0x3
	GRB1
	This event datagram contains events collected in ARR-GRB1 (GRB confirmed) mode.

	
	0x4
	GRB2
	This event datagram contains events collected in ARR-GRB2 (GRB ending) mode.

	
	0x5
	SOLAR
	Not used.

	
	0x6
	CALIBRATION
	This event datagram contains data collected during charge injection procedures.

	
	0X7
	DIAGNOSTIC
	Not used.

1.1.4.2 Private Context Contribution

The detailed structure of the Private Context Contribution is defined in the Doxygen pages for the LSEP package. See http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSEP/V1-3-1/rad750/lsepw/dox/html/struct__LSEP__etxCtb.html

Private Context Contribution: Contribution Header

Private Context Contributions use the regular LSFcontribution header.

Private Context Contribution: Contribution Body

The private context contribution stores physics configuration information, consisting of a Keys record and an EDS Configuration record.

The Keys record contains a 32-bit software configuration key identifying the secondary boot script used to load and initialize the FSW on this CPU for this run; a 32-bit hardware configuration key identifying the LATC configuration used to configure the instrument for this data collection run; and a 32-bit lpa_db key to identify the LPA software configuration used for data taking. Note that these 32-bit values contain FMX file identifiers (actually, the 22 “file name” bits of the standard FMX onboard file identifier; which ultimately map to a logical file key in the FMX database; see [ref 37]). This value can be used on the ground by MOOT to look up the corresponding configuration data .

The EDS Configuration record contains bit masks defining which event processors/handlers (e.g., a gamma filter, a heavy ion/CNO filter, a MIP/Tower alignment filter) were active when this data was collected; a configuration field for each active event handler; and finally, a list the processors/handlers that added a “results summary” to the head of the data for each event along with the amount of summary data included in that summary (e.g., the gamma filter inserts an 8 byte filter results summary before the data for each event
).

1.1.4.3 Process Private Record

The detailed structure of the Process Private Contribution is defined in the Doxygen pages for the LSEP package. See http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSEP/V1-3-1/rad750/lsepw/dox/html/struct__CDFP__ctxCtb.html

Process Private Record: Contribution Header

Process Private Records use the regular LSFcontribution header.

Process Private Record: Contribution Body

When Event Data Blocks contain event data records packaged at Level 8 compression, an additional contribution appears in the data stream. In B1-0-6, this contribution contains the identifiers for the data files containing CAL and/or ACD pedestal values for data collected with pedestals applied; the pedestal values that must be added back during analysis on the ground to properly interpret the event data. This adjustment is handled by the unpacking routines in the offline QSEP FSW package (see Section Error! Reference source not found. on page Error! Bookmark not defined.).

In addition, this contribution contains an identifier for the Tracker configuration database used to; again, this data is required to decompress the events. See Error! Reference source not found. on page Error! Bookmark not defined..

In addition, this contribution contains any common data extracted from events during the Level 8 compression process (for example, a baseline GEM deadtime value used to reconstruct the GEM counter data in each Level 8 compressed event).
1.1.5 Event Data Blocks

Event Data Blocks are introduced by an LSFcontribution header. Each event in the block is identified by an additional LSFrecord header. The types of event data blocks are described below, but data in these blocks are processed and reformatted by ground tools provided by the FSW Development Team, and detailed layouts are beyond the scope of this document.

As discussed earlier, if any of the event handlers that are active in the current data taking mode accept the event, that event’s data is placed into the data stream – a “positive vote” by one handler overrules all negative votes.

1.1.5.1 Start and Stop Marker Events

The first and last event data blocks from a run contain a “start” event and a “stop” event, respectively. These marker events are produced in response to a solicited trigger initiated by the LPA task on the SIU. Individual events must be extracted from the event data blocks, and the GEMcontribution examined to locate the marker events by their trigger condition (see Section 0 on page 3).

1.1.5.2 LSFRecords in Event Data

The layout of an LSFrecord containing data for one event is shown in Figure 3 below. Each record may contain a Results Summary Block, where event handlers (e.g., gamma filter) save a record of how they evaluated the event, followed by the actual data for the event. The record of which handlers were active during data collection and a “table of contents” for the structure of the Results Summary Block in each event is defined in the EDS record of the Private Context Contribution (see Section 1.1.4.2 above).

	Figure 3: LSFrecords for Individual Events in the Physics Event Data Stream

	
[image: image3.emf]Bridge TypeID Length

Bridge TypeID Length

NEXT EVENT

.

.

.

RESULTS SUMMARY BLOCK

DATA FROM THIS EVENT

(GEMcontribution, AEMcontribution, TEMcontributions)

Bridge field specifies whether a

Results Summary block is present

LSFrecord Header

LSFrecord Header

Results Summary Block:

Processing results reported

by each active event

handler for this event

In the LSFrecord header, the Bridge field is used to record whether a Results Summary Block is present for this event. The TypeID field is used to indicate which level of data compression was performed on the event, level 0 through 8 .In B1-0-6; this flag is used by QSEP unpacking code on the ground to reassemble the event data based on the algorithm that was used to encode it in flight. See Section 0 on page 3. The Length field records the length of the complete LSFrecord, including all sub-elements.

Each event handler includes its own counters and flags accumulated while it evaluates an event. For instance, if the gamma filter is operating during data collection, the LSFrecord contains 8 bytes of gamma filter statistics including the energy of the event and a summary of the filter cuts/conditions the event passed to be included in the data stream. If the heavy ion filter was active when the event was collected, heavy ion filter statistics are likewise included, and so on.

Result Summary Data from the Gamma Filter

The gamma filter leaves a record of progress through the stages of the filter algorithm itself and a mask of veto conditions. In cases where an event was rejected as a gamma but accepted by another handler, the veto condition mask records which veto the gamma filter actually imposed.

For the stages of algorithm execution, the gamma results summary bits record successive stages of examining event data, starting with the GEMcontribution, through the Calorimeter data, and then to more detailed Tracker/ACD track projection tests. The summary bits record the following: status of GEM throttle bit, occurrence of 3-in-a-row trigger, presence of CAL LO trigger, presence of CAL HI trigger, GEM CNO status bits. In addition, the results summary includes flags indicating: a strike in ACD top tiles, a strike in ACD side tiles, a strike in ACD “filter” tiles (tiles high on the sides of the ACD), presence of exactly one track, presence of 2 or more tracks; CAL energy PASS.

For veto conditions, the gamma results summary bits record the following conditions: “unrecoverable” error in the structure of the event data itself; low energy with no 2 track evidence; tracks into the Tracker “skirt” region; no tracks found; track row 2 match with ACD; track row 0 or 1 match with ACD; track top match; absence of tracks into the Calorimeter (yet energy recorded); ratio of energy in Calorimeter layer 0 to total energy is out of bounds; side face veto; top face veto; splash veto; event energy < 350 MeV but filter tile struck; absence of CAL LO trigger but filter tile struck.

Also see Section Error! Reference source not found. on page Error! Bookmark not defined..

Result Summary Data from the Heavy Ion Filter

The heavy ion filter leaves a record of its progress through its algorithm and sets bits indicating which veto condition led to rejection of the event as a heavy ion.

Heavy ion algorithm progress: unpacked the GEM data to detect whether CNO, CALLO, or Tracker activity are NOT indicated; event data reformatted as “event directory” to continue with processing; unpacked Calorimeter hit maps; began evaluation of number of Calorimeter layers; began evaluation of the energy deposited in the Calorimeter.

Heavy ion vetoes: could not create event directory; Calorimeter hit maps not valid; could not reconstruct contributions from subsystems; GEM data shows no CNO; GEM data shows no CAL LO; GEM data shows no Tracker activity; Calorimeter layer counts inconsistent with heavy ion; Calorimeter energy inconsistent with heavy ion.

Result Summary Data from the Minimum Ionizing Particle Filter

Like the previous handlers, the MIP filter leaves a record of its progress through its algorithm and sets bits indicating which veto condition led to rejection of the event as a minimum ionizing particle.

MIP algorithm progress: unpacked the GEM data to detect whether any Tracker activity or whether CNO bit was set; evaluated ACD data from the GEM to determine if a Tracker trigger comes from a Tower shadowed by an ACD tile; check GEM data for Tracker 3-in-a-row in adjacent Towers; event data reformatted as “event directory” to continue with processing; unpacked Calorimeter hit maps; began evaluation of number of Calorimeter layers struck.

MIP vetoes: could not create event directory; Calorimeter hit maps not valid; could not reconstruct contributions from subsystems; GEM data shows no Tracker activity; GEM data shows CNO; GEM data shows Tracker trigger originating from a shadowed Tower; GEM data shows Tracker 3-in-a-row in adjacent Towers; Calorimeter layer counts inconsistent with MIP.

Result Summary Data from the Trigger Diagnostic Filter

The diagnostic filter (DFC) examines the 8 trigger primitives read from the GEMcontribution (CAL LO, CAL HI, 3-in-a-row, etc) and filters events based on combinations/maps of those primitives. These 8 primitives can be organized into 256 distinct patterns. These patterns, when expressed as 16 bit words, can be mapped to the 16 trigger engines. When the DFC handler is activated in an observation mode, statistics on each trigger pattern can be collected to evaluate trigger performance. These statistics are reported in the DFC results summary block.

The diagnostic filter is designed for use in testing environments, where external triggers can be generated, rather than flight use.

Sampled Events in the Data Stream

An event handler can be configured to “leak” events into the data stream that would otherwise be vetoed according to one of the algorithm cuts defined by that handler. Analysts can examine the data from leaked events to debug event handler behavior and performance. These leaked events can be detected in datagrams by comparing the veto mask in each handler’s results summary (to determine which vetoes were actually imposed) against the full set of handler configurations set at the start of the observation run. If the handler was configured to leak an event on a certain veto condition, and the results summary for an event says that particular veto was executed by the handler algorithm, then the event must have been leaked.

In B1-0-6, none of the handler configurations (defined in LPA_DB files) provided with the official Release are set to leak events.

1.1.5.3 Raw EBF Data Blocks (Compression Level 0)

At “level 0” of compression, events are packaged into “Raw” EBF Data Blocks and sent to the SSR almost exactly as they are delivered by the Event Builder Module. When outputting Raw data, the FSW does not modify the data received from the EBM; it simply assembles the data along with the related Context Records and Time Update Records.

Each event in the block is preceded by an LSFrecord header. Following this header is a results summary block, into which different event handlers may insert results summary statistics that indicate how each event was selected for inclusion in the data stream. Finally, after the LSFrecord header and results summary block comes the event’s raw EBF data itself. See Figure 3 above.

Figure 4 below shows how blocks of events are packaged into the LSFcontribution sequence in a data run for which operators have requested uncompressed data.

Detailed layouts of the Level 0 compressed data are provided in the Doxygen pages for the LSEP package:

· The LSFrecord header and results summary block are defined in http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSEP/V1-3-1/rad750/lsepw/dox/html/struct__LSEP__evtCtb0__0.html

· The “body” of the Level 0 event data records is documented at http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSEP/V1-3-1/rad750/lsepw/dox/html/struct__LSEP__evtBdy0__0.html

	Figure 4: Example Event Data Stream (Uncompressed Data Requested)

	
[image: image4.emf]CCSDS Header (packet 1)

 LATdatagram Identity

 LATdatagram Length

Public Context Record (Abbreviated or Full)

Time Update Record (Abbreviated or Full format)

Time Update Record (Abbreviated or Full format)

 ETC . . .

CCSDS Header (packet 2)

 ETC.

.

.

.

Raw EBF Data Block 0 (multiple events)

Raw EBF Data Block 0 (multiple events)

Private Context Record

Inserted at the beginning of

the data collection run

Inserted at 1-PPS boundary if

time errors suspected

MAX SIZE:

4 KByte

Inserted at 1-PPS boundary if

time errors suspected

Raw EBF Data

Raw EBF data contains up to 18 hardware contributions:

· 1 GEMcontribution

· Up to 16 TEMcontributions

· 1 AEMcontribution.

As delivered by the EBM, each of these contributions is preceded by a LATp cell header word, EBM descriptor word, and event summary word
. Post-fix padding bytes are added to preserve 32-bit alignment.

The fields in these data words and contributions, and their layout and boundary alignments, are described in detail in [34, 35] (LATp cell header, EBM descriptor word, event summary word), [30] (for the GEMcontribution), [31] (for the TEMcontributions), and [32] (for the AEMcontribution).

The GEMcontribution of the start and stop marker events records (a) that a solicited trigger was issued to generate the maker event (bit 7 of the Condition Summary) and (b) the value of the start marker flag (LPA_START_MARKER = 0x1) or the stop maker flag (LPA_STOP_MARKER = 0x2) (in the 3 bit marker field of the event summary word).

1.1.5.4 Structurally Compressed EBF Data Blocks (Compression Levels 1 through 5)

In Structurally Compressed EBF Data Blocks, compressions “level 1” through “level 5,” compression of the data delivered by the EBM is achieved though combination, rearrangement, and elimination of redundant data. For instance, in Level 1 and 2 compressed data, trailing 0s in the EBF packet and internal LATp cell headers are removed from the raw data. All variants are handled by the data unpacking/decoding software provided by the FSW Development Team. Whereas in Raw EBF Data Blocks fields are boundary-aligned, fields in Compressed EBF Data Blocks can span arbitrary bit boundaries.

To assemble the Structurally Compressed Records, FSW examines the contents of the EBF data received from the EBM, and performs integrity checks on the data, reporting any structural errors in bitfields in the data stream itself; if errors are found, the data for the “erroneous” event is emitted in one of the lower-level formats.

As with the Raw EBF Data Blocks, each compressed event is preceded by an LSFrecord header and, depending on the LPA software configuration, a small segment of results summary information from one or more event processors. The header and results summary blocks are not compressed. Level 4 and Level 5 event data records contain “table of contents” data blocks that assist with decompression.

See Figure 5 below for a depiction of the data stream when structurally compressed data is interleaved with raw and algorithmically compressed data.

Detailed layouts of the Levels 1-5 compressed data are provided in the Doxygen pages for the LSEP package:

· The LSFrecord header and results summary block for Level 1 through Level 5 event data records are defined in http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSEP/V1-3-1/rad750/lsepw/dox/html/LSEP__evtCtb0_8h.html

· The “body” of the Level 1 through Level 5 event data records and the table of contents data for unpacking Level 4,5 data are documented at http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSEP/V1-3-1/rad750/lsepw/dox/html/LSEP__evtBdy0_8h.html

1.1.5.5 Intermediate Compressed (Compression Level 6, 7)

Compression levels 6 and 7 are reserved for future use.
1.1.5.6 Algorithmically Compressed EBF Data Blocks (Compression Level 8)

In Algorithmically Compressed EBF Data Blocks, structural compression via combination, rearrangement, and elimination of redundant data is enhanced by use of additional run-length encoding and quad-tree compression techniques. Again, whereas in Raw EBF Data Blocks fields are boundary-aligned, fields in Algorithmically Compressed EBF Data Blocks can span arbitrary bit boundaries.

To compress and assemble the Algorithmically Compressed Records, FSW examines the contents of the EBF data received from the EBM, and performs integrity checks on the data, reporting any structural errors in bitfields in the data stream itself; if errors are found, the data for the “erroneous” event is emitted in one of the less compressed formats.

As with the Raw EBF Data Blocks, each compressed event is preceded by an LSFrecord header and, depending on the LPA software configuration, a small segment of results summary information from one or more event processors. The header and results summary blocks are not compressed.

Figure 5 depicts an example sequence of LSFcontributions for a data run in which operators have requested algorithmically compressed data.
	Figure 5: Example Event Data Stream (Algorithmically Compressed Data Requested)

	
[image: image5.emf]CCSDS Header (packet 1)

 LATdatagram Identity

 LATdatagram Length

Public Context Record (Abbreivated or Full format)

 Algorithmically Compressed EBF Data Block (multiple events)

Time Update Record (Abbreviated or Full format)

 Algorithmically Compressed EBF Data Block (multiple events)

 Structurally Compressed EBF Data Block (one or more events)

 Algorithmically Compressed EBF Data Block (multiple events)

Time Update Record (Abbreviated or Full format)

 Algorithmically Compressed EBF Data Block (multiple events)

 ETC.

CCSDS Header (packet 2)

 ETC.

.

.

.

Private Context Record

Inserted at the beginning of

the data collection run

Inserted at a 1-PPS boundary if

time errors are suspected

MAX SIZE:

4 KByte

An event or events could not be

compressed at requested level;

switch to lower compression

level

Summary of Level 8 Data Compression Algorithms

Each Algorithmically Compressed EBF Data Block contains data from one or more events. A detailed discussion of the techniques employed to compress the GEM/ACD, TKR, and CAL contributions is beyond the scope of this document. A summary is provided here.

Since the data is “unpacked” as it arrives from the EBM and examined to perform the structural compression, FSW is able to check the data for integrity and structural errors that prevent correct unpacking and traversal. Any such errors are flagged in error bits encoded into the data stream. When errors are encountered, the affected data blocks are placed into the data stream with a lower level of compression.

The algorithmically compressed data for each event is transmitted in a block, with GEM/ACD data first, followed by the compressed CAL data for all affected Towers, followed by compressed TKR data for all affected Towers. The intra-contributor transport data (LATp header word, EBM descriptor word, and event summary word) is compressed as well.

The GEM and AEM contributions are encoded and emitted together. The ACD data in the GEM contribution is highly correlated with the ACD data in the AEM contribution, so it is encoded with the AEM data. Once the 4 32-bit words of ACD-related data have been transferred from the GEM contribution to the AEM contribution, the remaining GEM data is encoded, followed by the AEM data. Any structural errors are flagged and the corresponding records are transmitted without compression; since the GEM contribution is fixed length, it is not subject to such errors, but for the AEM data, the absence of a start bit on any of the 12 cables and/or a mismatch are signaled as errors and the uncompressed data is transmitted. If the AEM data is error-free, addressing and PHA data are encoded and emitted into the data stream.
The CAL and TKR data are correlated at the Tower level. The entire set of CAL data is assembled for all involved Towers, then integrity checked, compressed, and emitted Tower by Tower. Like the ACD data, the CAL data consists of two components, in this case addresses and ADC values. Given the CAL’s shape and physical symmetry, the addressing data is amenable to quad-tree compression. The ADC data is compressed using delta encoding and run length techniques. Any CAL contributions with integrity errors are transmitted in the clear. Next, the TKR data is assembled for all involved Towers and integrity-checked. The TKR contribution is emitted uncompressed if errors are encountered. If not, the accepts and strips are compressed and emitted Tower by Tower. Tower (CAL and TKR) data can include error and/or diagnostic contributions; no compression is performed on error or diagnostic blocks.

Transport data common to all contributors (LATp header word, EBM descriptor word, and event summary word) contributes a total of 144 bytes to each event. Much of the information is predictable or redundant. Compression reduces the set of transport fields to 4 bytes.

1.1.6 The Time Update Record

The GEMcontribution for each event contains the value of the GEM 7-bit 1-PPS counter. In physics event data, the Public Context Record contains the mission elapsed time and the value of the GEM 1-PPS counter at the start of the observation. Using this baseline information, the time of subsequent events is calculated from the event data itself, as long as the FSW does not signal any errors in timekeeping.

For cases where the mission elapsed time read from the TIMETONE message is in doubt, or cases where the FSW detects that 1-PPS events are not separated by precisely 1 second, FSW adds Time Update Records to the event data stream. If no errors are suspected when the 1-PPS signal is received, no Time Update Record is inserted into the data stream.

1.1.6.1 Types of Time Update Records

Time Update Records have two formats, a full format and an abbreviated format. The Full Time Update Record is used if either the Spacecraft or FSW have signaled that the time value provided from the TIMETONE message is suspect. The Abbreviated Time Update Record is used if no TIMETONE errors have been signaled, but FSW has determined that the elapsed time between 1-PPS signals is not precisely one second.

The Full Time Update Record consists of the 32-bit value of the GEM 1-PPS register, the current mission elapsed time from the most recent TIMETONE message (32 bits), followed by a field for Spacecraft timetone error flags (16 bits), and a field for FSW timetone error flags (16 bits).

The Abbreviated Record consists simply of the value of the 32 bit GEM 1-PPS register.
The detailed structure of the Time Update Records is defined in the Doxygen pages for the LSEP package. For links to both the full and abbreviated version, see http://www.slac.stanford.edu/exp/glast/flight/doxygen/APP/binary/LSE/V1-3-4/rad750/lsew/dox/html/LSE__timCtb_8h.html

1.1.6.2 Spacecraft Timetone Flags

The Spacecraft timetone indicator flags included in Full Time Update Records are defined in [43]. Bit 0: - IS_SOURCE_GPS equals one (1) when GPS is the source (for drift correction); otherwise zero (0). Bit 0 is the least significant bit.

1.1.7 Interruption of Event Data Collection

The fields of the Public Context Record (see Section 1.1.4 on page 3) are provided to allow reconstruction of the context in which a set of event data was collected and identify all transitions among pointed and repointed (ToO or ARR) modes during data collection.

�And compression tables?

�It can e be either: you can change filter config within a mode, or change mode

�Calling this a User Context Record now?

�11/28 This now is LSEP_etxCtb? Config keys and handler configuration?

�This layout has changed...

�Check this

�11/30: OK against LSE_etxBdy

�11/28: Confirmed all these -- OK

�When roll opver?

�When roll over?

�Yes right v. for B1-0-0

�11/30: OK. Checks against LSE_etxBdy

�Yes right v. for B1-0-0

�Yes right v. for B1-0-0

�See LSEPW_dgmFw.c for the LSEPW_contruct() routine.

�Yes right v. for B1-0-0

�Yes right v. for B1-0-0

�Yes right v. for B1-0-0

�[[Start and stop marker events. Solicited trigger issued when the LPASTART command is executed and LPASTOP. Look at LATC/latp.c/setTrigger(). Puts the LPA enum START_MARKER (“14”) and STOP_MARKER (“15”) into the appropriate events – where, in GEMcontribution? Well, in setTrigger(), the marker value gets written to TAM_ENGINE_F:

Set up (all) GEM scheduler registers (looks like same value is used for all, 0xffffffff – this is actually mapped to 8 4-bit fields, so the value written is 15, pointing us to TAM generator 15), TAM generator 15 (write 14 or 15 for stop or start), and trigger mask (write 0x40 for solicited trigger)

 ** Set increased stall time on trigger mask load command if disabling

LEM_LOAD(cr, GEM_encode, LEM_ADDR_GEM, GEM_BLK_TAM, GEM_TAM_ENGINE_F,

 (LEM_ADDR_MST_BCAST << 25) | ((marker & 7�) << 22) | 0x200000);

]]

The marker event The Condition Summary word in the event’s GEM data records that a solicited trigger was requested.

�What about some variations in which leading words are pitched?

�Yes right v. for B1-0-0

�Yes right v. for B1-0-0

�Yes right v. for B1-0-0

_1223114525.xls
Sheet1

		

						Bridge				TypeID				Length

						RESULTS SUMMARY BLOCK

						DATA FROM THIS EVENT
(GEMcontribution, AEMcontribution, TEMcontributions)

						Bridge				TypeID				Length

										NEXT EVENT

										.

										.

										.

Bridge field specifies whether a
Results Summary block is present

LSFrecord Header

LSFrecord Header

Results Summary Block:
Processing results reported by each active event handler for this event

Sheet2

		

Sheet3

		

_1233471725.xls
Sheet1

		

LSFdatagram Identity

LSFdatagram Length

LSFcontribution Identity

LSFcontribution Opaque (Bridge)

LSFcontribution Length

Alg. Compressed Event Data

Datagram Identifier (DID)

Public
Context Record
(Full format)

Extended Counter Record (XCR)

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

Raw Event Data

…...

Beginning of an
Event Data Block
(series of LSFrecords)

LSFdatagram Indentity

LSFdatagram Length

Initial Time Records
(previous and current Timetone messages)

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

Private
Context Record

Configuration Keys

EDS Configuration (Event Handler Configs)

…...

ROOT

New datagram:
* Previous datagram reached size limit OR
* Event handler configuration and/or observation mode changed

LSFcontribution Identity

LSFcontribution Opaque

LSFcontribution Length

CAL and ACD pedestal data IDs

Common Level 8 (de)compression data

Process Private Record

Tracker Configuration Database ID

Sheet2

		

Sheet3

		

_1233044270.xls
Sheet1

		

										CCSDS Header (packet 1)

								LATdatagram Identity

								LATdatagram Length

								Public Context Record (Abbreivated or Full format)

						Private Context Record

						Algorithmically Compressed EBF Data Block (multiple events)

								Time Update Record (Abbreviated or Full format)

						Algorithmically Compressed EBF Data Block (multiple events)

						Structurally Compressed EBF Data Block (one or more events)

						Algorithmically Compressed EBF Data Block (multiple events)

								Time Update Record (Abbreviated or Full format)

						Algorithmically Compressed EBF Data Block (multiple events)

										ETC.

										CCSDS Header (packet 2)

										ETC.

										.

										.

										.

Inserted at the beginning of the data collection run

Inserted at a 1-PPS boundary if
time errors are suspected

MAX SIZE:
4 KByte

An event or events could not be compressed at requested level; switch to lower compression level

Time Update Record (Abbreviated or Full format)

Public Context Record (Abbreivated or Full format)

Time Update Record (Abbreviated or Full format)

Sheet2

		

Sheet3

		

_1222672461.xls
Sheet1

		

LSFdatagram

LSFcontribution

LSF Records
(Event Data)

LSFcontribution

LSF Records
(Event Data)

LSFcontribution

LSF Records
(Event Data)

LSFcontribution

LSFcontribution

LSF Records
(Event Data)

64 Kbytes (configurable)

CCSDS Packet #1

CCSDS Packet #2

CCSDS Packet #3

CCSDS Packet #4

CCSDS Packet #5

CCSDS Packet #6

CCSDS Packet N

4 Kbytes (max)

padding

padding

padding

padding

padding

padding

padding

'first' packet in CCSDS sequence (flag=01)

'last' packet in CCSDS sequence (flag=10)

Sheet2

		

Sheet3

		

_1194937654.xls
Sheet1

		

										CCSDS Header (packet 1)

								LATdatagram Identity

								LATdatagram Length

								Public Context Record (Abbreviated or Full)

						Private Context Record

						Raw EBF Data Block 0 (multiple events)

								Time Update Record (Abbreviated or Full format)

						Raw EBF Data Block 0 (multiple events)

								Time Update Record (Abbreviated or Full format)

										ETC . . .

										CCSDS Header (packet 2)

										ETC.

										.

										.

										.

Inserted at the beginning of the data collection run

Inserted at 1-PPS boundary if
time errors suspected

MAX SIZE:
4 KByte

Inserted at 1-PPS boundary if
time errors suspected

Time Update Record (Abbreviated or Full format)

Time Update Record (Abbreviated or Full format)

Sheet2

		

Sheet3

		

