
Draft page 1

SLAC

Stanford Linear Accelerator Center

GLAST offline software

Recommendations for documentation

Document Version: 0

Document Date: 18 May 2000

Document Status: Draft

Document Author: THK, PK, ..

Abstract
This note gives recommendations for documentation, the expected content, the access to

documentation and the tools to be used to produce the documentation.

This is a living document which will evolve with experience. Please send comments to

hansl@slac.standord.edu.

1 Introduction

Types of documentation

We envisage different types of software documentation

• requirements and design documents together with justification of choices made;

made available before writing the code

• inline documentation of declaration and implementation files

• user guides, which explain how to set up the environment, describe the basic

functionality and use the software

• reference guides, which explain technical details

• documentation and evaluation of the algorithms

The limits between these different types of documentation are not sharp. Obviously there may

be some overlap.

GLAST offline software Recommendations for documentation
2 Documentation of ongoing work Version/Issue: 0/1

page 2 Draft

2 Documentation of ongoing work

It is very useful to build up documentation as the work progresses. The easiest way to make

information accessible to others is via web.

Plots can be accumulated on web pages together with short explanations. Avoid fancy icons,

they take time to display and have little information. A simple way to present information on

the web: create with suggestive names the directories for the projects, on which you work. In

each of these directories provide the files README, index.html (optional) and (depending

on your installation) a file which makes the directory browsable. The content of the directory

will be shown, when the directory is opened from netscape. The README file appears on top

of the file directory. If you want only a subset of files to be displayed, provide the file

index.html in the usual html style. Title lines in html files are displayed in the directory list.

To prepare a publication or note, collect the figures, and text snippets and figure captions in

.txt or .RTF format for portability. It is useful to follow standard names for some of the

directories. For example, create a directory ‘/imported’, in which figures are collected,

preferably in .eps format and following an agreed standard (figure size, font, line thickness

etc, see Appendix xxx for an example for PAW figures). Names for the directories for figure

captions and text snippets are proposed in the table below. ><

A central web page may point to the developer pages. Alternatively links may be established

from the agenda and minutes pages.

3 Inline documentation

This Chapter gives recommendations for inline documentation and introduces the tool

doxygen , which we have chosen for extraction of documentation from the code.

• Doxygen can generate an on-line documentation browser (in HTML) and/or an

off-line reference manual (in LATEX) from a set of documented source files.

• The documentation is extracted directly from the sources, which makes it much

easier to keep the documentation consistent with the source code.

File or directory Comments

README Comments displayed above directory list

index.html html selected list (optional)

.htaccess (at CERN) makes directory browsable, installation-dependent

/imported/*.eps

Publication in preparation:

• directory with figures

/captions/*.txt or *.rtf • figure captions

/notes/*.txt or *.rtf • text snippets

Draft page 3

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

• Doxygen can be configured to extract the code structure from (undocumented)

source files. The relations between the various elements are visualized by means of

include dependency graphs, inheritance diagrams, and collaboration diagrams,

which are all generated automatically.

• The documentation of large packages can be broken into smaller pieces using

dogygen ’s tag file mechanism.

Doxygen is a freely available tool(GNU General Public License). It is developed on Linux, but

runs on most other UNIX flavours. Furthermore, an executable for Windows 9x/NT is

available.

3.1 Inline documentation of header files

The documentation is extracted from the declaration files (e.g. *.h). The text to be extracted

has to be enclosed by /** ..*/. Any other documentation should start with ‘//’. For this reason

implementation files (e.g. *.cpp) should contain only ‘//’ comments.

><

Comments must be written before the class declaration, the member function declaration or

data member declaration. The first sentence of a comment block will be used for short

overviews. The complete text is displayed in the long description of the class or member.

We recommend to mark a block of comments by a vertical sequence of ‘*’s, see the example in

Listing 1>lis_header<. A few stylistic remarks to the examples: all code is indented (by 2

spaces), with respect to the C++ access keywords ‘public’, protected’ and ‘private’. Use blank

lines to separate different themes in the code, it helps readability.

Doxygen understands keywords and selected HTMLcommands. Listing 1 >lis_header< shows

the most useful ones. Using too many of the keywords and HTMLcommands tends to obscure

the code.

The example of the header in Listing 1 is organised in four groups of informations:

• Headers which are needed for the class declaration and the forward declaration of

classes. Note that there should be no /** ..*/ comments. The comment ‘//’ blocks are

shown, even when the corresponding declarations are missing, to show the order in

which the declarations should be made.

• The class description together with the constructor and destructor. Note the use of

the keywods @see, @version, @author. The argument for @version is automatically

provided by CVS through xxx.

/** this is a comment to be included in the extracted documentation */

// this comment will not be extracted by doxygen

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

page 4 Draft

• Examples of methods. The methods should be declared in the order of increasing

restriction of access, public > protected > private. For large classes repeat the access

specifiers for groups of member declarations, to improve readability. Note the use of

@param and @return keywords, which allow to describe the function arguments and

the return type.

• Private members and member functions.

• The example follows also the coding rules described in >ref_codingStandard<.

><>lis_header<

Listing 1 Example of a header file of class Abcd

1: #ifndef ABCD_H
2: #define ABCD_H
3:
4: //--
5: //
6: // Environment:
7: // Domain within which this class(es) operate
8: //--
9:

10: //-------------
11: // C Headers --
12: //-------------
13: extern "C" {
14: }
15:
16: //---------------
17: // C++ Headers --
18: //---------------
19:
20: //----------------------
21: // Base Class Headers --
22: //----------------------
23:
24: //-------------------------------
25: // Collaborating Class Headers --
26: //-------------------------------
27: #include "AbcCommon/AbcDefg.h"
28:
29: //------------------------------------
30: // Collaborating Class Declarations --
31: //------------------------------------
32: class SomeClass;
33: class AnotherClass;
34:
35: // ---------------------
36: // -- Class Interface --
37: // ---------------------
38:

Draft page 5

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

39:
40: /**
41: * One short sentence with essential description.
42: * Followed by the details of the description, as many sentences as
43: * may be needed.
44: * Followed by few key words (@see, @version, @author)
45: *
46: * @see AbcdManager
47: *
48: * @version Id (RCS keyword -> filename,revision,date,author,state)
49: *
50: * @author Some Body (originator)
51: */
52:
53: class Abcd {
54:
55: protected:
56:
57: Abcd(SomeClass theClass);
58:
59: public:
60:
61: virtual ~Abcd();
62:
63:

64: /**
65: * Appends an item to an open record by copying.
66: *
67: * @param theItem Item to be appended; will be copied.
68: * @return Zero if item was appended, non-zero otherwise.
69: * Return codes are as in XyzErrors.
70: */
71: virtual int append(const odfXTC& theItem);
72:

73: protected:
74:
75: /**
76: * Internal, protected version of Method1.
77: */
78: virtual int internalMethod1(SomeClass* theItem H) = 0;
79:
80: /**
81: * Internal, protected version of build.
82: */
83: virtual AnotherClass* internalBuild() = 0;
84:
85:

Listing 1 Example of a header file of class Abcd

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

page 6 Draft

3.2 Inline documentation of implementation files

As mentioned above, comments are not extracted from implementation files. It is still useful

to provide ‘//’ style comments and provide the implementations in a sequence close to the

sequence of the class declaration. An example is shown in Listing 2>lis_implementation<.

86: private:
87:
88: bool m_aParameter;
89:
90: // Disable copy constructor and assignment operator. Do not implement.
91: Abcd(const Abcd&);
92: Abcd& operator=(const Abcd&);
93:
94: };
95:
96: #endif // ABCD_H

Listing 1 Example of a header file of class Abcd

Draft page 7

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

>< >lis_implementation<

Listing 2 Example of documentation (not extracted by doxygen) and sequence of statements for an
implementation

1: //--
// File and Version Information:

2: // Id
3: //
4: // Description:
5: // Abcd implementation
6: //
7: // Author List:
8: // Some Body (originator)
9: //

10: //--
#include "Glast/Glast.h"

11:
12: //-----------------------
13: // This Class’s Header --
14: //-----------------------
15: #include "AbcdPackage/Abcd.h"
16:
17: //-------------
18: // C Headers --
19: //-------------
20: extern "C" {
21: }
22:
23: //---------------
24: // C++ Headers --
25: //---------------
26:
27: //-------------------------------
28: // Collaborating Class Headers --
29: //-------------------------------
30: #include "AbcdPackage/SomeClass.h"
31: #include "AbcdPackage/AnotherClass.h"
32:
33:
34: //--
35: // Local Macros, Typedefs, Structures, Unions and Forward Declarations
36: //--
37:

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

page 8 Draft

38:
39: // --
40: // -- Public Function Member Definitions --
41: // --
42:
43: //----------------
44: // Constructors --
45: //----------------
46: Abcd::Abcd(SomeClass theClass)
47: : m_aParameter(true)
48: {
49: }
50:
51: //--------------
52: // Destructor --
53: //--------------
54: Abcd::~Abcd()
55: {
56: }

57:
58: //-------------
59: // Methods --
60: //-------------
61:
62: int
63: Abcd::append(const SomeClass& theClass)
64: {
65:
66: return status;
67: }
68:

69: // ---
70: // -- Static Data & Function Member Definitions --
71: // ---
72:
73: // ---
74: // -- Protected Function Member Definitions --
75: // ---
76:
77:

Listing 2 Example of documentation (not extracted by doxygen) and sequence of statements for an
implementation

Draft page 9

GLAST offline software Recommendations for documentation
3 Inline documentation Version/Issue: 0/1

3.3 Structuring the documentation according to packages

If doxygen is run on a full code release, all output files are put into one directory,

./output/html. To avoid this and produce structured output, yet keep the hyperlinks

working, the tag file mechanism should be used.

We want to structure the document according to packages. This is achieved by using the

TAGFILES and GENERATE_TAGFILE options in the configuration file. Generate one tag file

(GENERATE_TAGFILE) for each package, which you wish to link to from within another

package. Use TAGFILES to include the generated tag files of all ‘external’ packages. Note that

the ‘uses’ statements in the CMT requirements file list the dependencies of a package. In case

of cyclic package dependencies (which should be avoided anyhow) doxygen may have to be

run twice to do the necessary bootstrapping.

3.4 Remember to update documentation

The importance of comments cannot be over-emphasized. Yet there is only one thing worse

than an undocumented source file: a misleadingly documented source file. Often such

out-of-sync comments render software components unusable. Whenever you change your

code, remember to update the comments appropriately or remove them altogether (from

>ref_<

3.5 Things to discuss/decide

1. Production of documentation. The documentation of the official software should be

updated with each new release by a person responsible for the documentation (e.g.

the software librarian).

2. The developer is responsible for the documentation of his code. The documentation

of a package is the responsibility of the group or person, who is responsible for the

package.

3. Documentation is reviewed together with the code. It is recommended to involve

someone, who is not directly working on the development of the package, to help in

the review.

4. The proposed format of header and implementation files

GLAST offline software Recommendations for documentation
4 User guide Version/Issue: 0/1

page 10 Draft

4 User guide

5 Documentation of algorithms

6 References

1 Doxygen, http://www.doxygen.org

2 C++ Coding Standard, Specification, CERN-UCO/1999/207,

>ref_codingStandard<

http://pst.web.cern.ch/PST/handBookWorkBook/HandBook/Programming/

CodingStandard/c++standard.pdf

3 ATLAS modifications to the above reference >ref_codingStandard<

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/qc/QC_CodingRu

les.html

4

To... Do.. More info...

Introduce yourself
to FrameMaker...

a. Follow the FrameMaker

Overview

b. Follow a Quick Tour

c. Follow the Online

Tutorials

Do Help > Overview... from any doc

window

Go to http://framemaker.cern.ch/,
“Getting Started”

(for both b. and c.)

Access available
FrameMaker
documentation...

a. Access the Online Help

b. Obtain a printed copy of

the FrameMaker 5.5 User

Guide

Do Help > Contents...

Buy it from COBS

(http://consult.cern.ch/books/),
or borrow a copy from 1-R-013

Access SDLT
documentation...

Read: Guide for using the Software
Documentation Layout Templates

http://framemaker.cern.ch/sdlt/guide/
Hard copies from 1-R-017

Edit the title block
and the document
metadata...

See Section 7, "Editing the title

block & the document metadata",

below

WARNING!

Do not replace the metadata user

variables with text!

