Ph. Busson, A. Karar, G.B. Kim

(LPNHE, Palaiseau, France)

O Schedule of our Study in 1998

Our study	Month	1	2	3	4	5	6	7	 12
Time	Signal Modeling	-							
domain	Data compression								
	DSP card								
Space domain	Simulation the CMSIM								

* We started studying data compression in space domain by using

the CMSIM with D.W. Kim, S.C. Lee.

(Kangnung National University, South Korea)

1. Introduction

① The problem of the ECAL data volume in CMS:

The full ECAL event size :

80,000 crystals × 10 pulse samples × 2bytes =1.6 Mbytes FPU+ADC system 80,000 crystals × 10 pulse samples × 3bytes =2.4 Mbytes in ULR

• CMS DAQ is ~ 1 Mbytes in total.

② How to reduce this volume ?

 Select "interesting" crystals :
 "Selective Readout" ⇒ ~100 kbytes/triggered event Preliminary studies (CMS Note 97/059 : C.Tully)

But the extra reduction is needed
 We propose to study data compression methods

 Time domain : Ph. Busson, A. Karar, G.B Kim (LPNHE, Palaiseau, France)
 Space domain : D.W Kim, S.C Lee, K.S Kang (Kangnung National University, South Korea)

2. The lossless compression in the time domain

3. The signal modeling using the MATLAB

①The signal modeling

• What is main idea of signal modeling ?

- ***** find the filter H(z) that make x'(n) as close as possible to x(n).
- * The calculation of coefficients a_p and b_q is very easy in the program MatLab(Matrix Laboratory) using the toolboxes.

♦ The result

1. The signal model (line) and data signal(red *)

2. The difference d(n) = x(n) - x(n)'

Conclusion : We can make good signal model

4. The different methods of data compression

The methods we have studies can be diveded into:

The differents method of data compression					
Differential coding	DPCM (Differential Pulse Code Modulation)				
	PDPCM (Predictive Differential Pulse Code Modulation)				
Entropy coding	Huffuman coding				
	Wavelet coding				
Coding	DCT(Discrete Cosine Transforme) coding				

• We propose two methods :

Γ

Dynamic codingResidual parametric coding

1. Data compression from the differential coding.

- * DPCM (Differential Pulse Code Modulation)
- * PDCPM (Predictive Differential Pulse Code Modulation)
- 1.1 DPCM (Differential Pulse Code Modulation)

The main idea : code the difference between neighbouring samples.

But we found that this method does not allow to reduce the code length significantly because our signal increases fast.

So we changed the method :

1.1.1 Improvement of the differential coding

O Method of sorting of the samples

The main idea : we can reduce the difference values between two samples by sorting of the samples.

For example,

1. we change the order of samples :

2. we compute the difference values between the samples

O The Result

The difference values between the samples with the original order.

The difference values between the samples with the sorted order.

We think that this new method may allow to increase the rate of the compression.

PDPCM (Predictive Differential Pulse Code Modulation)

The main idea of PDPCM is the try to predict one sample from the previous samples to improve the differential coding

The compression from PDPCM is more effective than DPCM.

But this method also not allows to reduce very much code length because that we have only one sample to prodict the 2nd sample.

★ Improvement of predictive coding

The main idea : to invert the order of samples

◆ The order of original samples : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

♠ The order of inverted samples : 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

To predict 1st sample, we have the 9 samples.

- ⇒ It may allow to product the significant predictive value for the 1st sample.
- ⇒ This new method may allow to increse the rate of the compression.

② The data compression from entropy coding

♠ The main idea of entropy coding is

***** signal with larger probability \Rightarrow code with smaller code length ***** signal with smaller probability \Rightarrow code with longer code length

			Huffman			
Value	Probability	Huffman	code length	$P \times length$		
		code				
0 (4bit)	0.450	1	1	0.450		
1 (4bit)	0.313	00	2	0.625		
2 (4bit)	0.114	011	3	0.342		
3 (4bit)	0.046	01000	5	0.23		
4 (4bit)	0.026	01010	5	0.13		
5 (4bit)	0.015	010010	6	0.09		
6 (4bit)	0.012	010110	6	0.072		
7 (4bit)	0.0069	0100110	7	0.0483		
8 (4bit)	0.0060	0101110	7	0.042		
9 (4bit)	0.0032	01001110	8	0.0256		
10 (4bit)	0.0032	01001111	8	0.0256		
11 (4bit)	0.0017	01011111	8	0.0136		
12 (4bit)	0.0013	010111101	9	0.0117		
13 (4bit)	0.0009	0101111000	10	0.009		
14 (4bit)	0.0004	01011110010	11	0.0044		
15(4bit)	0.0004	01011110011	11	0.0044		
average						
4 bit				1.8239		

♠ The example of Huffman coding for natural image

- ① The average of Huffman code length = 1.8239 bit
- ② The average of code length= 4 bit
 - ⇒ Efficiency of compression = $\frac{4}{1.823}$ = 2.2

③ The data compression from the transformation coding

The example of wavelet compression of images

Using the differences, the wavelet transform has numbers smaller than the original value

• The original values were compressed significantly by this method.

If we change the differences to zero ⇒ Lossy compression
 ↓ Lossy compression from DCT(Discrete Cosine Transform)
 ↓ Lossy compression with 32 zero values/ 64 values

S. Mallat : We want to work with specialist for the lossy compression of image and telecommunication ④ The data compression from the "dynamic" coding

• The main idea :

Code the samples with 1, 2, 3, bytes according to their amplitude

• If amplitude of sample $< 128 \Rightarrow$ Code with 8 bits

• If $128 < \text{amplitude} < 16384 \Rightarrow \text{Code with 16 bits}$

• If $16384 < \text{amplitude} < 4194304 \Rightarrow \text{Code with } 24 \text{ bits}$

We suppose that this method is simple.

(5) The data compression from the Residual parametric coding

• The main idea :

① If time jitter of the CMS signals is small.

② Generation of the signal model.

③ Normalize the signal model to the maximum value of the real signal.

- **(4)** The calculation:
 - ① The maximum value.
 - ② The difference between the real signal and our signal model normalized to the maximum value of the real signal.

(5) The coding :

★Header depends on the bit length of the difference values. It has 16 possibilities, for example :

- 0000 : Does not code the diffrence values (case : pile-up) Code the origianl values
- 0001 : The bit length of the difference value is 3 bit.
- 0010 : The bit length of the difference value is 4 bit.
 - :

• How much the number of bits is reduced ?

If we can take 10 smples and code each sample by 18 bits

- ⇒ the total number of bits in case of no data compression is 180 bits.
 - ⇒ If bit length of the difference is 3, the total number of bit in case of data compression from redidual parametric coding is

$$4+18+9\times3=49$$
 bits.

In this example, we have the compression of $4 \approx \frac{180}{49}$ factors .

♠ Calculation of compression factor

bit length (difference)	Total number of bits	Total number of bits (without compression)					
	(with compression)	180	160	140			
3	49	3.6	3.2	2.8			
4	58	3.1	2.7	2.4			
5	67	2.6	2.3	2.0			
6	76	2.3	2.1	1.8			
7	85	2.1	1.8	1.6			
8	94	1.9	1.7	1.4			

compression factor

Different methods of d	Status	Our opinion (for CMS)	
	DPCM	(not	
Differntial coding		efficient)	Not efficient
	ADPCM		
		Being	
		continue	
		Being	
Entropy coding	Huffuman	continue	Complicate
	Wavelet	Being	
Transformation coding		continue	Complicate
	DCT	with	
		S. Mallat	

• We propose two methods :

♦Dynamic coding

♠Residual parametric coding

5. Study of the DSP (Digital Signal Processor)

① About the DSP card

♦ Why do we need the DSP card : faster processing

♦ Characteristics of the TMS320c5x DSP Processors

TMS320	On-chip Memory			I/C) Ports	Cycle	Package
Device	RAM		ROM	Serial	Parallel	Time	Туре
	Data	Data-Prog	Prog			(ns)	
TMS320c50	1K	9K	2K	2	64K	50/35	132pin ceramic
TMS320c51	1K	1K	8K	2	64K	50/35	132pin plastic
TMS320c53	1K	3K	16K	2	64K	50/35	132pin plastic

The TMS320c5x family

② About the Hardware

The signal assignments for TMS320c50 132-pin

Parallel data buses

- The communication between DSP and Host (Pc)
- The Pc communicates with DSP through 16-bit data, status, and control registers.
- ♠ The diagram of the communication
 - ① The Pc and DSP communicated by the Control registers and Data registers.

Study of the DSP Card

- **1.** Computation of the execution time
 - **1.1**. The method of DPCM coding
 - 1.1.1. Principle of Programming

Receive 10 samples from PC

Compute 9 difference values between the neighbouring samples

Send 9 difference values to PC

1.1.2. Computation of the execution time

* To compute 9 difference values between the

neighbouring samples

Execution time = $13 \ \mu s$

1.2. The method of Residual parametric coding

* The Main idea

If the time jitter of the CMS signals is small,

we can reduce the data volume by coding one maximum value and

the difference values between the signal and model

1.2.1 Principle of Programming.

Receive 10 samples from PC

Generate the maximum value in 10 samples Compute the normalization factor using the maximum value Normalize the samples of signal using the normalization factor Compute 9 difference values between the signal and our model Send one maximum value and 9 difference values to PC **1.2.2.** Computation of the execution time

- * To generate the maximum value Execution time = $4.3 \,\mu s$
- * To compute the normalization factor Execution time = $0.4 \ \mu s$
- * To normalize the model values Execution time = $7 \mu s$
- To compute 9 difference values
 Execution time = 13 μs

Total execution time = 4.3 + 0.4 + 7 + 13

 $= 24.7 \, \mu s$

Conclusion

Future of our study

Test our methods with the data of beam test and of simulation using the CMSIM

Continue to study the DSP

• try to study the FPGA