

Visite Master APIM 27/10/2010

Groupe d'Accélération par Laser et Ondes Plasma

Nouvelles techniques d'accélération de particules

Accélération de particules par ondes plasma

onde plasma

gaz d'électrons et d'ions (plasma) : attraction/repulsion électrostatique fréquence plasma: $\omega_P \propto \sqrt{n_e}$ résonateur = plasma

$$E_z = \frac{m_e c \omega_p}{e} \approx 30000 \,\text{MV/m}$$

(pour n_e=10¹⁹ cm⁻³) $\omega_p \propto n_e^{1/2}$

Onde plasma accompagnée d'un champ E longitudinal très intense! excitation de l'onde plasma par champs électriques intenses :

faisceaux d'électrons

impulsions laser ultra-intenses

2004: Une percée majeure

- réalisation du «régime de la bulle»:
 expulsion totale des électrons du plasma
- faisceaux d'e-«monochromatiques» et fortement collimés

particle-in-cell (PIC) simulation of self-injection into bubble

Wei Lu (UCLA), AAC2006, Lake Geneva (USA)

CLIC Meeting (CERN) : Arnd Specka (LLR, Ecole Polytechnique, Palaiseau, France)

why get interested in laser acceleration?

○ LINACS: energy = gradient × length → long machines
 ○ LASERS: progression in intensity → technology breakthrough

increase the accelerating gradient: form RF to plasma waves

klystron → high power laser (ultra-short pulse) E=O(10J), τ=O(10fs) ⇒P=O(10PW) × repetition rate 0.1-1Hz → 10-100 kHz × wall-plug efficiency few % → few 10%

RF cavity → gas jet, gas cell, gas-filled capillary, capillary discharge (n ≈10¹⁷-10¹⁹cm⁻³)
•stability : → maîtrisé ✓ (contre-propagatif)
•laser guiding : beam-loading, pump-depletion
•laser coupling at capillary entry

RF wave \rightarrow plasma wave ($\lambda_{P} \approx 10-100 \mu m$)

•régime: linear, wave-breaking, bubble (*blow-out*)
•transverse emittance: focussing

✓ longitudinal emittance: energy dispersion $\Delta E/E$, ε_T

•stability: ion movement, useful plasma wave buckets

Les défis présents et futurs pour l'accélération par laser

paramètres d'un paquet d'un faisceau de particules :

charge, (position), (angle), (énergie), dispersion en E, émittance transverse, longueur

	LWFA	ILC	unit
 augmenter l'énergie >allonger la distance d'accélération 	0.2–1	250	GeV
 augmenter la charge haute densité de gaz? injection externe? 	0.01–0.1	3	nC
 réduire l'espacement des paquets laser rep. rate: "10Hz", multi plasma-wave buckets? 	0.1–10	370.10 ⁻⁹	S
O dispersion en énergie ("monochromaticité")	1%	0.1%	
 ○ longueur (ou durée) des paquets ▶ «bane or blessing?», mesure difficile 	<3 (?)	300	μm
○ émittance transverse ("concentrabilité")	<3 (?)	19/0.07	mm.mrad

O stabilité et contrôle des faisceaux ("reproductibilité")

charge, angle (pointé), énergie

Maîtrise de l'énergie du faisceau: Injection contrôlée (LOA,2006)

colliding pulse injection: experimental setup (2008)

O LASER

- ► TiSaph: 50TW 30fs
- ➤2 beams a₀=1.3 a₁=0.6
- non-collinear angle=7°
- > <1 shot/ 10sec

${\rm O}$ gas jet

- ► length = 3mm
- ▶ e⁻ density n_e=3.10¹⁸-2.10¹⁹cm⁻³

(via pressure)

Stabilité du faisceau : 8 tirs consécutifs (AAC08, A.B.)

VIsite Master APIM — GALOP (A. Specka)

Monochromaticité : observat^o de spectres étroits (AAC08, A.B.)

VIsite Master APIM — GALOP (A. Specka)

design of a high resolution magnetic spectrometer

- O quadrupole triplet (FODOF, ∫|dB/dx|dz = 1.2T) + permanent dipole (∫Bdz = 0.36T Tm)
- E resolution <1% over 100-150 MeV over 100-400MeV range
- 2 energy ranges: 100-220 MeV, 220-1200MeV \Rightarrow 2 phosphor screens
- \bigcirc avoid resolution degradation by multiple scattering \Rightarrow transport in vacuum
- O stigmatic imaging for particular energy values
- O in general: astigmatic \Rightarrow divergence estimation \Rightarrow **E resolution** shot to shot

Frontière de l'énergie : augmenter la longueur d'accélération

O guidage de l'onde plasma (et du laser): ∎

- > auto-focalisation dans une cellule de gaz
- canaux plasma créés par laser
- capillaires « passifs »
- décharge dans un capillaire
- régime d'auto-injection
 (= bulle plasma = *blowout*)
- O opération stable à 450 MeV

O décharge capillaire dévéloppé par LOA & LPP, manip en cours

Une application : la radiographie gamma

--- Ahmed BEN ISMAIL, 13th Asia-Pacific Conference on Non-Destructive Testing (APCNDT 09)

28/10/10

undulator experiment at LOA (2009/2010)

VIsite Master APIM — GALOP (A. Specka)

Accélération Laser & Plasma partout dans le monde

Contexte présent et futur

○ LOA : laser de la salle jaune «salle jaune» 40TW, 30fs

- injection dans un onduleur
- guidage du laser dans une décharge capillaire (augmentation de l'énergie)
- mesure de l'émittane du faisceau d'e-
- O CEA (SPAM) : IRAMIS UHI 100TW 25fs, 100TW, 2 salles

○ ILE (Institut de la Lumière Extrême)

- implantation au à partir de 2013
- deux lasers: LUIRE: 1PW 15fs, début 2011 (installé à l'ENSTA)
 - APOLLON:10 PW, 15fs 2014 (installat^o au CEA Orme des Merisiers)
- applications: e⁻. p, XFEL compact, physique exotique
- accélération d'électrons: O(10GeV), caractérisation complète, 2 étages
- O **ELI** (Extreme Light Infrastructure)
 - ▶ 10 fois ILE (100PW)
 - > projet européen
 - LLR «membre » d'ELI

