Jet energy-loss studies with CMS

Yetkin Yilmaz Ecole Polytechnique Laboratoire Leprince Ringuet

Rencontres Ions Lourds Orsay, 20 March 2014

Collisions of heavy-ions

QCD matter:

- Temperature
- Mean-free-path
- Debye-mass
- dE/dx
- Viscosity

Properties of QCD medium

Can we build this curve for QCD interactions?

From experiment to theory

Part I: Jet reconstruction

CMS detector

CMS detector

- Blind to neutral energy
- Not 100% efficient
- Limited acceptance

- Hcal energy
- Neutral hadrons
- Capture charged hadrons that tracking missed
- Event-by-event shower fluctuations:
 - Non-linearity
 - Wide resolution
- Acceptance limited due to B-field
- Low granularity

- EM candidates
- Photons
- (Details: CMS-PAS-HIN-11-004)

Challenge : Underlying event in PbPb

Large background activity Especially in most central collisions, which are most interesting

Modification of the inclusive jet spectra

suppressed in PbPb

Interpreting R_{AA}

Results are unfolded for resolution effects – straightforward to compare with theory predictions.

"Surface-biased" measurement: More sensitive to the **less-quenched** jets (not saying *geometry* - yet)

Are the jets quenched often by similar amounts, or by a wide variety of values?

Dijet and Photon+Jet correlations can answer more questions

Part II : Studying dijet correlations

Dijet correlation and background

p_T -dependence of the dijet imbalance

Dijets in PbPb are more imbalanced than Pythia at all bins of leading jet p_T

p_T -dependence of the dijet imbalance

Modeling is needed to extract the exact p_T dependence

Part III : Putting the results together

Following slides present a simple modeling attempt in order to:

- illustrate a correct approach for comparison the data
- get a physical intuition, although not as precisely as from a realistic calculation

Jet resolution effects on imbalance

Good Data-MC comparison recipe

Resolution effects on jet selection

Good Data-MC comparison recipe

Toy model

Simple Toy Model: Independent quenching

An artificial energy-loss is applied on particle-jets in Pythia generated events

Each jet suffers a random energy-loss, completely independent on other jets in the event

No difference between quark vs gluon jets

The probability distribution of energyloss is modulated by

- the tuned mean amount and
- momentum dependence

Simple model: Independent quenching

- Jet RAA suggests that about 20 GeV is lost on average
- This is not sufficient to cause imbalance as seen in data
- There should be a further anti-correlation between the two jets

Geometry-inspired toy-model

- The material along the trajectory of the jet is summed, weighted by a power of r
- r = distance between target nucleon and jet origin
- Static medium

Correlation between two jets

Material weighted by r⁰

Moving towards more imbalance compared to independent quenching

Blue is consistent with R_{AA} but Red is better with $< p_{T,1}/p_{T,2} >$ • PbPb data Model tunes $\Delta p_{\tau} \sim 10.0$ $\Delta p_{\tau} \sim 20.0$ $\Delta p_{\tau} \sim 30.0$ $\Delta p_{\tau} \sim 30.0$ $\Delta p_{\tau} \sim 40.0$ $\Delta p_{\tau} \sim 50.0$ $\Delta p_{\tau} \sim 60.0$ $\Delta p_{\tau} \sim 70.0$

Material weighted by r¹

Material weighted by r²

(material 2)/(material)

Model study

The trends observed in model with r-weighted material, with not much (perhaps logarithmic) p_T dependence, resulting in ~20 GeV/jet energy-loss, are consistent with data;

Any model, inducing similar correlations (a combination of geometry & radiation & parton-type effects)

may be successful in description of data

Conclusions

Inclusive jet R_{AA} and dijet imbalance provide complementary information on the energy-loss dynamics, which may be combined in order to isolate medium geometry-sensitive effects

Different species, different geometry and widened kinematics range will all add to this picture!

p (GeV/c)

The end

Next : back-up slides

What do we want to reconstruct?

partons+Underlying Event(UE)

hadrons:

UE-associated : What energy would be in this cone if the hard scattering did not happen parton-associated : What the hard scattering added into the event

JETS:

well defined by the clustering algorithm, FastJet anti- k_T , R = 0.3

Energy-corrected to particle-level (PYTHIA) jets NO constituent p_T threshold

What do we want to reconstruct?

Problems:

- Some UE may still be there
- Some parton associated particles are lost because of reconstruction
- Some parton associated particles are lost because of bkg subtraction
- The calorimeter energy deposit of the final particles fluctuates
- The particle composition is different from what the corrections assume

Corrected to this level, based on pythia and pp data

ParticleFlow algorithm

Calorimeter clusters and tracks are matched (Details: CMS-PAS-HIN-11-004)

The candidates are merged into pseudo-towers in order to subtract background per segmentation

Dijet imbalance studies

Subtraction of background jets

Bkg fluctuations peak at cut-off (30 GeV) $\rightarrow p_{T,2}/p_{T,1}$ (bkg) ~ 0.25 This distribution is subtracted in all later plots

Photon-Jet correlations

Phys. Lett. B 718 (2013) 773

Tuning Quenching Weights

p_T dependence of energy-loss

Mild p_T dependence, the first two parameterizations survive. Similar lesson from other geometry models.

Centrality dependence of smearing

as much as in central PbPb!

Estimate background for each tower ring of constant η estimated background = $\langle p_T \rangle + \sigma(p_T)$

- Captures dN/dη of background
- Misses φ modulation to be improved

Tunable parameters:Coefficient of RMS

Subtract background from all towers Run the clustering algorithm (anti- k_T)

Start over, knowing where the jets roughly are

Start over, knowing where the jets roughly are Exclude a certain area around the jets Re-estimate the background for all towers

Tunable parameters:

- Coefficient of RMS
- Raw jet threshold
- Radius of exclusion (not necessarily = R)

Start over, knowing where the jets roughly are Exclude a certain area around the jets Re-estimate the background for all towers Subtract final background Cluster jets **Tunable parameters:**

- Coefficient of RMS
- Raw jet threshold
- Radius of exclusion (not necessarily = R)

Preview: New UE subtraction

Underlying event characterized by forward calorimeters and tuned with minimum-bias data

Subtraction can be modulated based on azimuthal harmonics

Stay tuned...