Bottomonia in CMS in pp, pPb and PbPb collisions

Émilien Chapon

Laboratoire Leprince-Ringuet, École polytechnique, Palaiseau

Heavy ion meeting, January 26th, 2016 IPNO, Orsay

European Research Council Established by the European Commission

Quarkonia in heavy ion collisions

Sarah Szabo

- Quarkonia as good probes of the medium evolution.
- Two families (charmonia, bottomonia), several excited states: importance of quark mass, binding energy and size?
- pp collisions: production mechanism "in vacuum"
- pA collisions: cold nuclear matter effects
- AA collisions: quark gluon plasma

Why study bottomonia?

- Three states with similar production rate but different binding energy
- Higher mass than charmonia: better acceptance in CMS (down to 0 p_T)
- No non-prompt component
- Very high melting temperature for $\Upsilon(1S)$

Feed-down contribution to bottomonia production

Significant fraction of Υ coming from feed-down contributions (about $\sim 30-40\%)$

Muons in the CMS experiment

- Transverse slice
 - Muon reconstruction: silicon tracker + muon sub-detectors
 - Tracker p_T resolution: 1-2% up to $p_T \sim 100 \, {\rm GeV}/c$.
 - Excellent p_T resolution.
 - separation of quarkonium states
 - · displaced tracks for heavy-flavour measurements

(1) Υ in pPb

(2) Υ polarisation vs multiplicity in pp

(3) Υ in PbPb

(1) Υ in pPb

Υ polarisation vs multiplicity in pp

🗿 Υ in PbPl

Υ in pPb

Double ratio

• Double ratio cancels initial state effects for excited ground states

- Separating final state effects from initial state effects
- Binding energy dependence is observed.
- PbPb: factor > 5 more suppression of excited states compared to the ground state.

Υ in pPb

Double ratio

- Double ratio cancels initial state effects for excited ground states
 - Separating final state effects from initial state effects
- Binding energy dependence is observed.
- PbPb: factor > 5 more suppression of excited states compared to the ground state.
- pPb: much lower dependence on $\Upsilon(nS)$ states
 - Excited states also suffer more from CNM effects than the ground state.

JHEP 04 (2014) 103

Υ in pPb

Single ratio of nS/1S in pp and pPb

JHEP 04 (2014) 103

0.35 Event activity is determined with 0.3 transverse energy deposited in the 0.25 forward hadronic calorimeter 0.2 • $\Upsilon(nS)/\Upsilon(1S)$ ratios fall with 0.15E event activity 0.1 Is the multiplicity affecting the $\Upsilon(nS)?$ 0.05 • Are the $\Upsilon(nS)$ affecting the multiplicity?

Υ in pPb

Single ratio of nS/1S in pp and pPb

JHEP 04 (2014) 103

- Event activity is determined with number of tracks (charged particles) in the central detector
- $\Upsilon(nS)/\Upsilon(1S)$ ratios fall with event activity
 - Is the multiplicity affecting the $\Upsilon(nS)$?
 - Are the Υ(nS) affecting the multiplicity?
 - Effects become stronger with tracks nearby

① ↑ in pPb

(2) Υ polarisation vs multiplicity in pp

₃ Ƴ in PbP

Quarkonium production

The non-relativistic QCD approach (factorisation):

 $\sigma(A + B \to H + X) = \sigma(A + B \to ([Q\bar{Q}] + X) \otimes \mathcal{P}([Q\bar{Q}] \to H)$

- Different long distance matrix elements (LDMEs) → different polarisations.
- Multiplicity dependence?

Upsilon polarisation vs multiplicity in pp

G--- O

No strong change of Υ polarisation with multiplicity

 $m \Upsilon$ polarisation vs multiplicity in pp

(3) Υ in PbPb

Υ in PbPb

Previous analyses

- Stronger suppression for excited states is observed
- Ordered with assumed binding energies
- New: larger pp reference at the same energy (2013 data)
 - Similar (*N*_{coll}-scaled) luminosity as 2011 PbPb data
 - More precise mapping of the kinematic of the suppression

Signal extraction

CMS-PAS-HIN-15-001

Different single muon cuts for different states:

- $\Upsilon(1S)$: $p_T^{\mu_1} > 3.5 \,\mathrm{GeV}$, $p_T^{\mu_2} > 4 \,\mathrm{GeV}$
- $\Upsilon(2S, 3S): p_T^{\mu_{1,2}} > 4 \, \text{GeV}$

Analysis procedure and systematic uncertainties

- $\bullet\,$ Raw yields corrected for acceptance $\times\,$ efficiency
- Results given for $|y(\Upsilon)| < 2.4$, $0 < p_T(\Upsilon) < 20$ GeV.
- Efficiency correction from simulation, corrected for data-MC differences using a tag and probe method.

Systematic uncertainty	Magnitude	corr.
Signal extraction	< 28%	no
Acceptance \times efficiency	$\sim 2.5\%$ (pp), $\sim 8.2\%$ (PbPb)	no
Tag and probe: μ ID, trigger	0.4% - 17%	no
Tag and probe: inner tracking	3.4% (pp), 10% (PbPb)	yes
pp luminosity	3.7%	yes
Min. bias (PbPb norm.)	3%	yes
Overlap function T_{AA}	6.2%	yes (p _T , y)

CMS-PAS-HIN-15-00

Cross sections in pp

- Cross sections extracted for the three states.
- Important input to production models.

Cross sections in PbPb

- CMS-PAS-HIN-15-001
- First measurement of the kinematic dependence of $\Upsilon(2S)$ production in AA.

Cross sections in PbPb

CMS-PAS-HIN-15-001

- First measurement of the kinematic dependence of $\Upsilon(2S)$ production in AA.
- Let's compare pp to AA: nuclear modification factors (R_{AA}) .

R_{AA} : p_T dependence

R_{AA} : p_T dependence

 Υ production is suppressed in PbPb, with binding energy ordering. Integrated results (Min. bias):

- $R_{AA}(\Upsilon(1S)) = 0.43 \pm 0.03 \pm 0.07$
- $R_{AA}(\Upsilon(2S)) = 0.12 \pm 0.03 \pm 0.02$
- *R*_{AA}(↑(3*S*)) < 0.14 at 95% C.L.
- No significant p_T dependence over the measured range.
- $\Upsilon(1S)$ well described, some tension for $\Upsilon(2S)$

R_{AA}: rapidity dependence

• No significant y dependence over the measured range

R_{AA}: rapidity dependence

• No significant *y* dependence over the measured range

CMS-PAS-HIN-15-001

• Similar 1*S* suppression in the ALICE rapidity range

R_{AA}: rapidity dependence

• No significant y dependence over the measured range

CMS-PAS-HIN-15-001

- Similar 1*S* suppression in the ALICE rapidity range
- Good description in the model, at mid-rapidity only

R_{AA}: centrality dependence

- Stronger suppression in central events
- Significant ↑(2S) suppression in peripheral events

R_{AA} : centrality dependence

- Stronger suppression in central events
- Significant ↑(2S) suppression in peripheral events
- Comparison with STAR (|y| < 1, $\sqrt{s_{NN}} = 200 \text{ GeV}$ (AuAu) or 193 GeV (UU):
 - No significant modification in peripheral events
 - Strong suppression in central events

R_{AA}: centrality dependence

• Strickland: thermal suppression in QGP, satisfactory description

RAA: centrality dependence

- Strickland: thermal suppression in QGP, satisfactory description
- TAMU: also includes CNM and regeneration effects
 - Regeneration dominates for $\Upsilon(2S)$ in central events

Summary

Summary

Comprehensive study of Υ production in pp, pPb and PbPb collisions.

- Larger suppression of excited Υ states in PbPb than in pPb, with respect to pp
- Different ↑(nS)/↑(1S) depending on event activity
- No evidence for different production mechanisms vs. multiplicity
- Suppression in PbPb: stronger for excited states, stronger in central events, flat in p_T and y.

• How suppressed really are $\Upsilon(3S)$?

- $\sqrt{s_{NN}}$ dependence of $\Upsilon(1S)$ suppression?
- CMS-

Quarkonium production

The non-relativistic QCD approach:

 $\sigma(A + B \to H + X) = \sigma(A + B \to ([Q\bar{Q}] + X) \otimes \mathcal{P}([Q\bar{Q}] \to H)$

- $\sigma(A + B \rightarrow ([Q\bar{Q}] + X)$ (short-distance coefficients, SDCs): perturbative
- $\mathcal{P}([Q\bar{Q}] \rightarrow H)$ (long-distance matrix elements, LDMEs): non-perturbative, dependent on the $Q\bar{Q}$ quantum numbers (colour, spin, orbital momentum), constant and universal
- Are LDMEs really universal?
- Dependence with charged particle multiplicity, pp vs pPb vs PbPb...?

• The polarisation information is stored in the angular distribution of the particle decay:

$$W(\cos\theta,\phi|\vec{\lambda}) = 1 + \lambda_{\theta}\cos^{2}\theta + \lambda_{\phi}\sin\theta\cos2\phi + \lambda_{\theta\phi}\sin2\theta\cos\phi$$

- The polarisation parameters $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi})$ depend on the choice of reference frame.
- A frame-independent approach:

Goal: measure self-normalised cross sections as a function of multiplicity.

Positive correlation in pp, small negative correlation in PbPb (suppression). Unit slope in pp and pPb.

Raw *R_{AA}* (Strickland, 1507.03951)

