# Suppression of the upsilon excited states measured with CMS

#### Soohwan Lee Korea University

Saclay heavy ion seminar 24 Nov, 2022





#### Quarkonia inside QGP



2

#### The CMS detector



### Signal extraction

Signal (dimuon from Y(nS)) enhancement with MVA selection(BDT) for PbPb data



# **Classification through BDT**



- BDT is a N-dimension regression with ensemble learning
  - Hard for one tree, but the forest of weighted trees do a good job in learning

#### **Dimuon mass spectra**

CMS-PAS-HIN-21-007



• Distribution fitted to 3 Crystal Ball signal + background

6

# **Observation of Y(3S)**

- Clear peak after background reduction
- $5\sigma$  significance of non-zero Y measurement in the integrated  $p_{\rm T}$ , centrality dataset
  - Evidence to reject total meltdown of Υ
     (3S)



### Systematic uncertainties

|                           | Yield     |          |           |          | Ratio           |          |
|---------------------------|-----------|----------|-----------|----------|-----------------|----------|
| <u>CMS-PAS-HIN-21-007</u> | Y(2S) (%) |          | Y(3S) (%) |          | Y(3S)/Y(2S) (%) |          |
| Source                    | pp        | PbPb     | рр        | PbPb     | pp              | PbPb     |
| BDT selection             | -         | 0.3-9.0  | -         | 1.5-18.6 | -               | 1.2-22.8 |
| Background PDF            | 0.1-1.4   | 0.3-11.7 | 0.2-1.6   | 1.4-21.4 | <0.5            | 0.6-17.6 |
| Signal PDF                | 0.1-1.1   | 0.5-2.6  | 0.4-1.1   | 0.1-2.5  | 0.3-0.6         | 0.1-3.0  |
| Signal parameter          | 0.1-1.2   | 0.0-3.8  | 0.1-1.6   | 0.3-3.7  | 0.05-1.4        | 0.1-0.9  |
| Event selection           | -         | 0.0-0.5  | -         | 0.2-13.1 | -               | 0.1-13.6 |
| Correction factors        | <0.1      | < 0.5    | < 0.1     | <0.4     | <2.0            |          |
| T&P                       | 0.9-1.0   | 3.8-4.5  | 0.9-1.1   | 3.8-4.4  | -               |          |
|                           |           |          |           |          |                 |          |
| Total uncertainty         | 1.0-1.8   | 3.9-13.5 | 1.1-2.2   | 6.0-22.2 | 0.4-1.5         | 4.1-23.8 |
|                           |           |          |           |          |                 |          |

- Most uncertainty comes from background distribution shape and BDT selection
- $5\sigma$  significance obtained encompassing all yield related uncertainty

#### **Results**



$$R_{AA}(p_{T}, y) = \frac{d^{2}N_{Y,corr}^{AA}/dp_{T}dy}{\langle T_{AA}\rangle d^{2}\sigma_{Y}^{PP}/dp_{T}dy}$$

- Sequential suppression visual in the plots
  - Comparison more visible in double ratio
  - Suppression of all  $\Upsilon$  toward head-on collision

#### Results



- ullet Suppression hierarchy consistent in the measured  $p_{
  m T}$  interval
- Compatible with constant trend for all measurement

#### **Comparison with OQS**



#### **Comparison with Boltzmann theory**



JHEP 01(2021) 046

#### - Coupled Boltzmann Equation

- Incl. dissociation & regeneration No regeneration in Y(3S)
- Large uncertainty from nPDF
- Each down included
- Feed down included

### **Comparison with Transport theory**



#### - Transport model with kinetic rate

- Solution of kinetic rate eq.
- Feed down included

- Uncertainty depend on formation time or regeneration *T* 

#### **Comparison with CIM**



#### Summary of data/theory comparison



- All model tend to describe heavier suppression for Y(3S) towards central collisions
  - The amount of relative suppression though varies by different assumptions and calculations
  - Regeneration of the excited states should be treated with care

#### Summary of data/theory comparison



- Some model fail to describe the pT spectra
  - Data emphasis Y(3S) points to be important constraint to modeling bottomonia production and suppression!

#### **Comparison with other experiment**



• Our data matches very will with data from ATLAS

# **Upsilon suppression in forward**

#### Phys. Lett. B 822 (2021) 136579



• Forward data from ALICE very similar to CMS measurement in rapidity < 2.4

# Impact of the system size



# Impact of the system size



- Stronger suppression in PbPb for all Y states compared to that of pPb
- Compatible with the comover description

# Elliptic flow of Y in AA

#### Phys. Lett. B 819 (2021) 136385 **CMS** PbPb 1.7 nb<sup>-1</sup> (5.02 TeV PbPb 1.7 nb<sup>-1</sup> (5.02 TeV) 0.2 0.15 $p_{_{T}}^{\mu}$ > 3.5 GeV/c ----- Hong, Lee (10-90%) $p_T^\mu$ > 3.5 GeV/c **CMS** Yao (10-90%) |y| < 2.4 $p_{\tau}^{\Upsilon} < 50 \text{ GeV/c}$ |y| < 2.40.1 0.15 Du, Rapp (20-40%) •Υ(1S) Cent. 10-90% Bhaduri et al. (10-90%) Υ(2S) Revgers et al. x10<sup>-1</sup> 0.05 (10-20, 40-50, 60-70%) 0.1 $v_2^{\Upsilon(1S)}$ ∑~ < • 0.05 -0.05-0.1 -0.05<sup>L</sup> 0 -0.1520 25 30 35 5 15 10 40 45 50 10-30 30-50 10-90 50-90 $p_{\tau}^{\Upsilon(1S)}$ (GeV/c) Centrality (%)

- Elliptic flow coefficient compatible to zero  $\rightarrow$  different collectivity for bottomonium in HIC
- Compatible with most of the data in error range
  - Calls for another magnitude of precision in data measurement!

#### Will gluon fragmentation matter for bottomonia?



- J/ $\psi$  z measurement gave strength to production of prompt charmonia from gluon fragmentation
- Will this be also true for "even more early produced Ys?"

### Polarization of Y(1S)



#### Conclusion

- Recent observation of  $\Upsilon(3S)$  completes the final missing piece of the sequential suppression picture of the S-wave bottomonia states
- $\bullet$  Data and model for  $\Upsilon$  in PbPb collisions in LHC still inconclusive due to low statistics/large parameter uncertainty
  - Clarifying yet uncertain effects (feed down/polarization) would help better analyze/understand data

#### Conclusion



- Questions regarding pinpointing the QGP temperature with quarkonia perspective
   Not trivial only with the suppression data
   Stringent test to our experimental capability &
  - knowledge for understanding QCD

# Back up



Korea Univ. mascot, Hoi and Daro

#### Excited states of charmonia



• (Statistical) recombination boost  $R_{AA}$  for charmonia case

27

#### Star & Phenix measurement @ 200 GeV Au+Au, CMS 2.76 TeV

Phys. Rev. C 91, 024913



#### Rapidity dependence of upsilon modification



• No sign of rapidity dependence for the  $\Upsilon$  states