lrfu

saclay

Institut de recherche sur les lois fondamentales de

l'**U**nivers

In collaboration with E. G. Ferreiro, F. Fleuret, J. P. Lansberg & N. Matagne

CNM EFFECTS ON QUARKONIUM PRODUCTION : FROM RHIC TO LHC

Andry Rakotozafindrabe CEA (Saclay) IRFU/SPhN

Rencontres Ions Lourds, July 26th, 2011

Shadowing : a cold nuclear matter effect

(Some) nPDFs available on the market

Shadowing computation

in A+B: quarkonia production cross-section modified by a shadowing correction factor :

 $\mathcal{F}(R_g^A(\boldsymbol{x_1}, Q^2)) \times \mathcal{F}(R_g^B(\boldsymbol{x_2}, Q^2))$

 $\overset{\circ}{*}$ 4-mom conservation relates (x_1, x_2) to quarkonia (y, p_T)

- production models (CEM, NRQCD, CSM ...) in p+p gives quarkonia thanks to various processes, each with:
 - \bigcirc a given phase-space in (x_1, x_2, y, p_T)
 - a given weight (differential cross-section) for each point in this phase-space
 in this phase-space
 in different production models may different production shadowings

How prod. models can differ? extrinsic scheme 😂 intrinsic scheme $2 \rightarrow 2 \text{ process}$ $2 \rightarrow 1 \text{ process}$ $g + g \rightarrow c\bar{c} \text{ or } b\bar{b}$ $x_{1,2} = \frac{m}{\sqrt{s_{NN}}} e^{\pm y}$

- Handy : unequivocal correspondence $(x_1, x_2) \Leftrightarrow (y, p_T)$
- Quarkonia pT comes from initial partons
- e.g. CEM LO

 $g + g \rightarrow \{J/\psi, \Upsilon\} + g$ more degrees of freedom in the kinematics : \mathbf{V} several $(x_1, x_2) \Leftarrow (y, p_T)$

 $y, p_T, x_1 \Longrightarrow x_2 = \frac{x_1 m_T \sqrt{se^{-y}} - M^2}{\sqrt{s} (\sqrt{sx_1} - m_T e^y)}$

- Quarkonia pT is balanced by the outgoing gluon
- e.g. CSM LO, COM LO

V Use reasonably good models in p+p to compute CNM effects in p+A, A+A

CNM effects at RHIC : J/ψ in dAu

 $g + g \rightarrow J/\psi + g$ $g + g \rightarrow c\bar{c}$

Sector a given y, <x> is larger in the 2 \rightarrow 2 process

CNM effects at RHIC : J/ψ in dAu

CNM effects at RHIC : J/ψ in dAu

CEM vs s-channel cut CSM as prod. model : $\sigma_{abs}(y)$ from Rcp in dAu @ 200 GeV

[1] A. D. Frawley, INT, Seattle USA, June 2009

[2] E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A. R., PRC 81 (2010) 064911

CNM effects at RHIC : Y in dAu

CNM effects at RHIC : Υ in dAu $2 \rightarrow 2$ process Let us try to increase the suppression of g(x) in the EMC region, keeping momentum conservation : $\int xg(x) dx = Cte$.

Data:

STAR Preliminary, Nucl. Phys. A830 (2009) 235c PHENIX Preliminary, H. Pereira Da Costa, talk at The Rencontres de Moriond, March 2010

CNM effects from RHIC to LHC

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne and A. R., Nucl. Phys. A 855 (2011) 327-330

Extrinsic pT, EKS98 shadowing : e 1.3 ط ص ۹ ۳ ۳ ۳ extrinsic p_ EKS98 $\sigma_{abs} = 0 \text{ mb}$ --- σ_{abs} = 1.5 mb 1.1 ----- σ_{abs} = 2.8 mb 0 mb 0.9 0.8 0.8 0.7 0.6 0.6 Best fit οι - σ_{abs} · = 3.9 mb 0.5 -2 2 -1 V

 $2 \rightarrow 2$ process

RHIC dAu @ 200 GeV

LHC pPb @ 2.76 TeV

 \mathbf{M} LHC : much smaller x, antshadowing peak at much lower y

CNM effects from RHIC to LHC

CNM effects from RHIC to LHC

 $2 \rightarrow 2$ process

E. G. Ferreiro, F. Fleuret, J. P. Lansberg, N. Matagne and A. R., Nucl. Phys. A 855 (2011) 327-330

lyl<0.9

150 200 250 300 350

lyl∈[2.5,4.0]

extrinsic-p_{τ} EKS98, σ = 0.0 mb

mid-y & fwd-y

mid-y & fwd-y

RHIC AuAu @ 200 GeV

LHC PbPb @ 2.76 TeV

50

LHC : CNM effects go in the opposite way as should go the recombination, with more suppression at mid-y than at fwd-y.

N_{part}

CNM effects at LHC : J/ψ in PbPb Two models (prompt/direct J/ψ) + nPDF and μ_F uncertainties vs inclusive $J/\psi R_{AA}$:

CNM effects at LHC : J/ψ in PbPb Two models (prompt/direct J/ψ) + nPDF and μ_F uncertainties vs inclusive $J/\psi R_{AA}$:

Alice data dominated by low p_T J/ψ
PbPb suppression : about the same or slightly more than CNM effects

 \Rightarrow hint of a large recombination effect as expected at low p_T ?

CNM effects at LHC : J/ψ in PbPb Going to mid-y, adding a pT cut > 6.5 GeV/c to the most conservative model and to the data :

O PbPb suppression goes much further than CNM effects \clubsuit confirms that recombination is small at high p_T ?

Conclusion and outlook (1/2)

- Shadowing computations can benefit from an improved knowledge of quarkonia production process
- Within the extrinsic sheme (2 to 2 process) :
 - more complex kinematics
 - for a given y, x is larger => larger absorption crosssection needed to match RHIC data, and antishadowing peak shifted to larger y
 - Upsilon could be used as a tool to explore antishadowing and EMC effect

Conclusion and outlook (2/2)

- Shadowing computations suffer from large uncertainties. Especially large is the uncertainty due to μ_F for the J/ ψ .
- Hints of recombination at low p_T, and of a negligible recombination at large p_T.
- Final Figure 3 It will be difficult to understand the present suppression pattern of the J/ψ if we do not reduce these uncertainties on shadowing computations.
 - Image PA run with a good precision on the y, p_T and centrality dependence

move to heavier quarkonium states at LHC ?

BACK-UP

nPDF for Pb

EKS98 HKN07 nDSg EPS08

CSM LO, NLO, NLO+*cg* vs the y spectra in p+p at RHIC

points : y spectra for the *direct*. J/ψ, as extrapolated from PHENIX spectra

Solution direct J/ψ

S. J. Brodsky and J. P. Lansberg, arXiv:0908.0754

The y spectra in p+p at RHIC

TABLE V: Comparison of the measured J/ψ cross section with the three models considered in this text. Direct J/ψ cross sections are obtained assuming that the χ_c and ψ' feed-down fractions measured at midrapidity are the same at forward rapidity. Type A, type B and type C errors are quadratically summed in the measured result.

	direct J/ψ	inclusive
CEM	-	$169\pm30~\mathrm{nb}$
NLO CSM	$53\pm26~\mathrm{nb}$	-
LO NRQCD	-	$140\pm5~\mathrm{nb}$
Measured	105 ± 26 nb	$181 \pm 22 ~\rm{nb}$

A. Adare et al. (PHENIX Collaboration), arXiv:1105.1966 (2011)

The pT spectra in p+p at RHIC

S-channel cut model vs Tevatron pT spectra

PRL 100, 032006 (2008) 0 LO CSM: J/ψ+cc LO CSM: J/ψ+g CDF data CSM CUT σ_{tot} $\sigma_{\rm I}$ σ_{T} 0

H. Haberzettl et J. P. Lansberg,

10

«Clean» exp. results not so clear underlying theory

Artoisenet, Lansberg, Maltoni, PLB 653:60 (2007); Campbell, Maltoni, Tramontano,

PRL 98:252002 (2007); Gong, Wang, PRL 100:232001 (2008)

Artoisenet, Campbell, Lansberg, Maltoni, Tramontano (in progress) Kramer, Prog. Part. Nucl. Phys. 47:141 (2001)

CSM NNLO*

Direct J/ψ vs pT :

- not satisfactory for CSM even with higher order corrections included
- good agreement for NRQCD, with matrix elements tuned with CDF data

NRQCD - CO dominance

CNM effects at RHIC : J/ψ R_{CuCu} vs pT

CNM effects at RHIC : J/ψ in dAu E. G. Ferreiro, F. Fleuret, J. P. Lansberg

and A. R., PRC 81 (2010) 064911

absorption : 0, 2, 4, 6 mb

R_{CP} in d+Au vs rapidity

data: PHENIX preliminary

CNM effects : $J/\psi R_{dAu} v_{S} p_T$

absorption : 0, 2, 4, 6 mb

۳ ۳ ۳ 1.5 arXiv:0809.4684 arXiv:0809.4684 arXiv:0809.4684 ł -4. -**P** P 0.5 -2.2<y<-1.2 -2.2<y<-1.2 -2.2<y<-1.2 EKS98 EPSo8 1.5 · 4· 0.5 lyl<0.35 lyl<0.35 lyl<0.35 Extrinsic p_T with EKS98 xtrinsic p_Twith EPS08 xtrinsic p, with nDS - σ_{abe}= 0 mb - o_{abs}= 0 mb ..= 0 mb 1.5 ⊲_{abs}= 2 mb g_{abs}= 2 mb •• o_{abs}= 2 mb - o_{abs}= 4 mb • ග_{abs}= 4 mb σ_h=4 mb = 0_{abs}= 6 mb ರ_{abs}= 6 mb 1. = 6 mb 1.2<y<2.2 1.2<y<2.2 1.2<y<2.2 0.5 2 8 2 8 8 4 6 6 2 6 Δ Δ p_T (GeV/c) Phys. Rev. C 77, 024912 (2008) p_ (GeV/c) Phys. Rev. C 77, 024912 (2008) p_T (GeV/c) PHENIX data: Phys. Rev. C 77, 024912 (2008)

Andry Rakotozafindrabe (CEA Saclay)

E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A. R.

PLB 680, 50-55 (2009)

absorption : 0, 2, 4, 6, 8 mb

E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A. R., PRC 81 (2010) 064911

absorption : 0, 2, 4, 6, 8 mb

E. G. Ferreiro, F. Fleuret, J. P. Lansberg and A. R., PRC 81 (2010) 064911

- b according to 2π b db
- position of nucleons ∈ A, B according to Woods-Saxon

What about any dependence of σ_{abs} on kinematics ? investigated assuming $<math>2 \rightarrow I$ process only

What about any dependence of σ_{abs} on kinematics ? investigated assuming 2-> I process only

