#### Constraining nPDFs with LHC data - now and in the future

#### Petja Paakkinen

#### IGFAE – Universidade de Santiago de Compostela

16 Mar 2021







## Section 1

nPDF overview

## What the nPDFs are?

Based on the collinear factorization of QCD:

$$\mathrm{d}\sigma^{AB\to k+X} \stackrel{Q\gg\Lambda_{\mathrm{QCD}}}{=} \sum_{i,j,X'} f_i^A(Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X'}(Q^2) \otimes f_j^B(Q^2) + \mathcal{O}(1/Q^2)$$

The coefficient functions  ${\rm d}\hat{\sigma}^{ij\to k+X'}$  are calculable from perturbative QCD. . .

PDFs are *universal*, process independent, and obey the DGLAP equations

$$Q^2 \frac{\partial f_i^A}{\partial Q^2} = \sum_j P_{ij} \otimes f_j^A$$

How do we get the  $f_i^{p/A}$ ?

- Physical models: too numerous to cite here 'Everybody's Model is Cool'
- Extract from lattice: not an easy task
- Fit to data: parametrize the *x* and *A*-dependence *the global analysis approach*

... but the parton distribution functions  $f_i^A, f_j^B$  contain long-range physics and cannot be obtained by perturbative means

For a nucleus  $\boldsymbol{A}$ , one can decompose

 $\begin{array}{c} \text{bound-proton PDF} \\ f_i^A(x,Q^2) = Z f_i^{\mathrm{p}/A}(x,Q^2) + (A-Z) \ f_i^{\mathrm{n}/A} \ (x,Q^2), \end{array}$ 

and assume  $f_i^{\mathrm{p}/A} \overset{\mathrm{isospin}}{\longleftrightarrow} f_j^{\mathrm{n}/A}$ 

|                                 | EPPS16       | nNNPDF2.0    | nCTEQ15WZ     | nNNPDF1.0    | TuJu19          | KSASG20          |
|---------------------------------|--------------|--------------|---------------|--------------|-----------------|------------------|
| Order in $\alpha_s$             | NLO          | NLO          | NLO           | NNLO         | NNLO            | NNLO             |
| IA NC DIS                       | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$    | $\checkmark$     |
| $\nu$ A CC DIS                  | $\checkmark$ | $\checkmark$ |               |              | $\checkmark$    | $\checkmark$     |
| pA DY                           | $\checkmark$ |              | $\checkmark$  |              |                 |                  |
| πA DY                           | $\checkmark$ |              |               |              |                 |                  |
| RHIC dAu/pp $\pi$               | $\checkmark$ |              | $\checkmark$  |              |                 |                  |
| LHC pPb jets                    | $\checkmark$ |              |               |              |                 |                  |
| LHC pPb W,Z Run 1               | $\checkmark$ | $\checkmark$ | $\checkmark$  |              |                 |                  |
| LHC pPb W,Z Run 2               |              | $\checkmark$ | $\checkmark$  |              |                 |                  |
|                                 |              |              |               |              |                 |                  |
| Q cut in DIS                    | 1.3 GeV      | 1.87 GeV     | 2 GeV         | 1.87 GeV     | 1.87 GeV        | 1.3 GeV          |
| Data points                     | 1811         | 1467         | 828           | 451          | 2336            | 4525             |
| Free parameters                 | 20           | 256          | 19            | 183          | 16              | 9                |
| Error analysis                  | Hessian      | Monte Carlo  | Hessian       | Monte Carlo  | Hessian         | Hessian          |
| Error tolerance $\Delta \chi^2$ | 52           | N/A          | 35            | N/A          | 50              | 10               |
| Free-proton PDFs                | CT14         | NNPDF3.1     | $\sim$ CTEQ6M | NNPDF3.1     | own fit         | CT18             |
| HQ treatment                    | GM-VFNS      | GM-VFNS      | GM-VFNS       | GM-VFNS      | GM-VFNS         | GM-VFNS          |
| Indep. flavours                 | 6            | 6            | 5             | 3            | 4               | 3                |
|                                 |              |              |               |              |                 |                  |
| Year                            | 2016         | 2020         | 2020          | 2019         | 2019            | 2020             |
| Reference                       | EPJC 77, 163 | JHEP 09, 183 | EPJC 80, 968  | EPJC 79, 471 | PRD 100, 096015 | arXiv:2010.00555 |

|                                 | EPPS16       | nNNPDF2.0    | nCTEQ15WZ     | nNNPDF1.0    | TuJu19          | KSASG20          |
|---------------------------------|--------------|--------------|---------------|--------------|-----------------|------------------|
| Order in $\alpha_s$             | NLO          | NLO          | NLO           | NNLO         | NNLO            | NNLO             |
| la NC DIS                       | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$    | $\checkmark$     |
| $\nu$ A CC DIS                  | $\checkmark$ | $\checkmark$ |               |              | $\checkmark$    | $\checkmark$     |
| pA DY                           | $\checkmark$ |              | $\checkmark$  |              |                 |                  |
| πA DY                           | $\checkmark$ |              |               |              |                 |                  |
| RHIC dAu/pp $\pi$               | $\checkmark$ |              | $\checkmark$  |              |                 |                  |
| LHC pPb jets                    | $\checkmark$ |              |               |              |                 |                  |
| LHC pPb W,Z Run 1               | $\checkmark$ | $\checkmark$ | $\checkmark$  |              |                 |                  |
| LHC pPb W,Z Run 2               |              | $\checkmark$ | $\checkmark$  |              |                 |                  |
|                                 |              |              |               |              |                 |                  |
| Q cut in DIS                    | 1.3 GeV      | 1.87 GeV     | 2 GeV         | 1.87 GeV     | 1.87 GeV        | 1.3 GeV          |
| Data points                     | 1811         | 1467         | 828           | 451          | 2336            | 4525             |
| Free parameters                 | 20           | 256          | 19            | 183          | 16              | 9                |
| Error analysis                  | Hessian      | Monte Carlo  | Hessian       | Monte Carlo  | Hessian         | Hessian          |
| Error tolerance $\Delta \chi^2$ | 52           | N/A          | 35            | N/A          | 50              | 10               |
| Free-proton PDFs                | CT14         | NNPDF3.1     | $\sim$ CTEQ6M | NNPDF3.1     | own fit         | CT18             |
| HQ treatment                    | GM-VFNS      | GM-VFNS      | GM-VFNS       | GM-VFNS      | GM-VFNS         | GM-VFNS          |
| Indep. flavours                 | 6            | 6            | 5             | 3            | 4               | 3                |
|                                 |              |              |               |              |                 |                  |
| Year                            | 2016         | 2020         | 2020          | 2019         | 2019            | 2020             |
| Reference                       | EPJC 77, 163 | JHEP 09, 183 | EPJC 80, 968  | EPJC 79, 471 | PRD 100, 096015 | arXiv:2010.00555 |

|                                 | EPPS16       | nNNPDF2.0    | nCTEQ15WZ     | nNNPDF1.0    | TuJu19          | KSASG20          |
|---------------------------------|--------------|--------------|---------------|--------------|-----------------|------------------|
| Order in $\alpha_s$             | NLO          | NLO          | NLO           | NNLO         | NNLO            | NNLO             |
| la NC DIS                       | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$    | $\checkmark$     |
| $\nu$ A CC DIS                  | $\checkmark$ | $\checkmark$ |               |              | $\checkmark$    | $\checkmark$     |
| pA DY                           | $\checkmark$ |              | $\checkmark$  |              |                 |                  |
| $\pi A DY$                      | $\checkmark$ |              |               |              |                 |                  |
| RHIC dAu/pp $\pi$               | $\checkmark$ |              | $\checkmark$  |              |                 |                  |
| LHC pPb jets                    | $\checkmark$ |              |               |              |                 |                  |
| LHC pPb W,Z Run 1               | $\checkmark$ | $\checkmark$ | $\checkmark$  |              |                 |                  |
| LHC pPb W,Z Run 2               |              | $\checkmark$ | $\checkmark$  |              |                 |                  |
|                                 |              |              |               |              |                 |                  |
| Q cut in DIS                    | 1.3 GeV      | 1.87 GeV     | 2 GeV         | 1.87 GeV     | 1.87 GeV        | 1.3 GeV          |
| Data points                     | 1811         | 1467         | 828           | 451          | 2336            | 4525             |
| Free parameters                 | 20           | 256          | 19            | 183          | 16              | 9                |
| Error analysis                  | Hessian      | Monte Carlo  | Hessian       | Monte Carlo  | Hessian         | Hessian          |
| Error tolerance $\Delta \chi^2$ | 52           | N/A          | 35            | N/A          | 50              | 10               |
| Free-proton PDFs                | CT14         | NNPDF3.1     | $\sim$ CTEQ6M | NNPDF3.1     | own fit         | CT18             |
| HQ treatment                    | GM-VFNS      | GM-VFNS      | GM-VFNS       | GM-VFNS      | GM-VFNS         | GM-VFNS          |
| Indep. flavours                 | 6            | 6            | 5             | 3            | 4               | 3                |
| -                               |              |              |               |              |                 |                  |
| Year                            | 2016         | 2020         | 2020          | 2019         | 2019            | 2020             |
| Reference                       | EPJC 77, 163 | JHEP 09, 183 | EPJC 80, 968  | EPJC 79, 471 | PRD 100, 096015 | arXiv:2010.00555 |

|                                 | EPPS16       | nNNPDF2.0    | nCTEQ15WZ     | nNNPDF1.0    | TuJu19          | KSASG20               |
|---------------------------------|--------------|--------------|---------------|--------------|-----------------|-----------------------|
| Order in $\alpha_s$             | NLO          | NLO          | NLO           | NNLO         | NNLO            | NNLO                  |
| <i>l</i> A NC DIS               | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$    | <ul> <li>✓</li> </ul> |
| $\nu$ A CC DIS                  | $\checkmark$ | $\checkmark$ |               |              | $\checkmark$    | $\checkmark$          |
| pA DY                           | $\checkmark$ |              | $\checkmark$  |              |                 |                       |
| πA DY                           | $\checkmark$ |              |               |              |                 |                       |
| RHIC dAu/pp $\pi$               | $\checkmark$ |              | $\checkmark$  |              |                 |                       |
| LHC pPb jets                    | $\checkmark$ |              |               |              |                 |                       |
| LHC pPb W,Z Run 1               | $\checkmark$ | $\checkmark$ | $\checkmark$  |              |                 |                       |
| LHC pPb W,Z Run 2               |              | $\checkmark$ | $\checkmark$  |              |                 |                       |
|                                 |              |              |               |              |                 |                       |
| Q cut in DIS                    | 1.3 GeV      | 1.87 GeV     | 2 GeV         | 1.87 GeV     | 1.87 GeV        | 1.3 GeV               |
| Data points                     | 1811         | 1467         | 828           | 451          | 2336            | 4525                  |
| Free parameters                 | 20           | 256          | 19            | 183          | 16              | 9                     |
| Error analysis                  | Hessian      | Monte Carlo  | Hessian       | Monte Carlo  | Hessian         | Hessian               |
| Error tolerance $\Delta \chi^2$ | 52           | N/A          | 35            | N/A          | 50              | 10                    |
| Free-proton PDFs                | CT14         | NNPDF3.1     | $\sim$ CTEQ6M | NNPDF3.1     | own fit         | CT18                  |
| HQ treatment                    | GM-VFNS      | GM-VFNS      | GM-VFNS       | GM-VFNS      | GM-VFNS         | GM-VFNS               |
| Indep. flavours                 | 6            | 6            | 5             | 3            | 4               | 3                     |
|                                 |              |              |               |              |                 |                       |
| Year                            | 2016         | 2020         | 2020          | 2019         | 2019            | 2020                  |
| Reference                       | EPJC 77, 163 | JHEP 09, 183 | EPJC 80, 968  | EPJC 79, 471 | PRD 100, 096015 | arXiv:2010.00555      |

|                                 | EPPS16       | nNNPDF2.0             | nCTEQ15WZ     | nNNPDF1.0    | TuJu19          | KSASG20               |
|---------------------------------|--------------|-----------------------|---------------|--------------|-----------------|-----------------------|
| Order in $\alpha_s$             | NLO          | NLO                   | NLO           | NNLO         | NNLO            | NNLO                  |
| <i>l</i> A NC DIS               | $\checkmark$ | <ul> <li>✓</li> </ul> | $\checkmark$  | $\checkmark$ | $\checkmark$    | <ul> <li>✓</li> </ul> |
| $\nu$ A CC DIS                  | $\checkmark$ | $\checkmark$          |               |              | $\checkmark$    | $\checkmark$          |
| pA DY                           | $\checkmark$ |                       | $\checkmark$  |              |                 |                       |
| πA DY                           | $\checkmark$ |                       |               |              |                 |                       |
| RHIC dAu/pp $\pi$               | $\checkmark$ |                       | $\checkmark$  |              |                 |                       |
| LHC pPb jets                    | $\checkmark$ |                       |               |              |                 |                       |
| LHC pPb W,Z Run 1               | $\checkmark$ | $\checkmark$          | $\checkmark$  |              |                 |                       |
| LHC pPb W,Z Run 2               |              | $\checkmark$          | $\checkmark$  |              |                 |                       |
|                                 |              |                       |               |              |                 |                       |
| Q cut in DIS                    | 1.3 GeV      | 1.87 GeV              | 2 GeV         | 1.87 GeV     | 1.87 GeV        | 1.3 GeV               |
| Data points                     | 1811         | 1467                  | 828           | 451          | 2336            | 4525                  |
| Free parameters                 | 20           | 256                   | 19            | 183          | 16              | 9                     |
| Error analysis                  | Hessian      | Monte Carlo           | Hessian       | Monte Carlo  | Hessian         | Hessian               |
| Error tolerance $\Delta \chi^2$ | 52           | N/A                   | 35            | N/A          | 50              | 10                    |
| Free-proton PDFs                | CT14         | NNPDF3.1              | $\sim$ CTEQ6M | NNPDF3.1     | own fit         | CT18                  |
| HQ treatment                    | GM-VFNS      | GM-VFNS               | GM-VFNS       | GM-VFNS      | GM-VFNS         | GM-VFNS               |
| Indep. flavours                 | 6            | 6                     | 5             | 3            | 4               | 3                     |
|                                 |              |                       |               |              |                 |                       |
| Year                            | 2016         | 2020                  | 2020          | 2019         | 2019            | 2020                  |
| Reference                       | EPJC 77, 163 | JHEP 09, 183          | EPJC 80, 968  | EPJC 79, 471 | PRD 100, 096015 | arXiv:2010.00555      |

#### State of the art

#### Average u and d quark modifications (in lead)

The average u and d valence and sea modifications

$$R^A_{u_{\rm V}+d_{\rm V}} = \frac{f^{p/A}_{u_{\rm V}} + f^{p/A}_{d_{\rm V}}}{f^p_{u_{\rm V}} + f^p_{d_{\rm V}}} \qquad R^A_{\bar{u}+\bar{d}} = \frac{f^{p/A}_{\bar{u}} + f^{p/A}_{\bar{d}}}{f^p_{\bar{u}} + f^p_{\bar{d}}}$$

are under control

Since most nuclei are close to isoscalar, these are the dominant flavour combinations probed in nuclear DIS and DY

nNNPDF2.0 does not use fixed-target DY data

→ less constraints for valence/sea separation compared to EPPS16 & nCTEQ15WZ

 $f_i^{p/A} =$ bound proton PDF  $f_i^p =$ free-proton PDF



#### u versus d quark asymmetries (in lead)

The u/d flavour asymmetries

$$\mathcal{A}^{A}_{u_{\rm V}-d_{\rm V}} = \frac{f^{p/A}_{u_{\rm V}} - f^{p/A}_{d_{\rm V}}}{f^{p/A}_{u_{\rm V}} + f^{p/A}_{d_{\rm V}}} \qquad \mathcal{A}^{A}_{\bar{u}-\bar{d}} = \frac{f^{p/A}_{\bar{u}} - f^{p/A}_{\bar{d}}}{f^{p/A}_{\bar{u}} + f^{p/A}_{\bar{d}}}$$

are difficult to constrain

The  $\boldsymbol{u}-\boldsymbol{d}$  flavour differences enter the cross sections only through a non-isoscalarity correction

- → factor of  $\frac{A-2Z}{A}$  suppression w.r.t. the average
- $\rightarrow$  most HIC observables insensitive to these

Potential probes:

- vA CC DIS
- *π*A DY

 $\blacksquare$   $\mathsf{W}^\pm$  bosons



## Gluon and strange modifications (in lead)

The gluon and strange modifications are poorly constrained in the current nPDF releases

 Better gluon constraints are available from LHC pPb dijets and D-mesons, but these need to be included in the global analyses (in progress)

Present data not able to put strong constraints for the strangeness

■ W+charm measured in pp, doable in pPb?







x

7 / 27

#### Section 2

Dijets and  $D^0s$  at 5.02 TeV – Better gluon constraints

## Dijets in pPb at 5.02 TeV



Double ratio convenient for:

- Cancellation of hadronization and luminosity uncertainties separately for pPb and pp
  - do not expect strong final-state effects
- Cancellation of free-proton PDF uncertainties in pPb/pp
  - direct access to nuclear modifications

Good resolution to gluon nuclear modifications for  $10^{-3} < x < 0.5 \label{eq:10}$ 

## Dijets in pPb at 5.02 TeV - EPPS16 reweighted



A Hessian PDF reweighting study shows that these data can put stringent constraints on the gluon modifications

- Drastic reduction in EPPS16 gluon uncertainties
- Support for mid-x antishadowing and small-x shadowing
- $\blacksquare$  Probes the onset of shadowing down to  $x>10^{-3}$

Remaining questions:

- Is there EMC suppression for gluons?
- What happens at  $x < 10^{-3}$ ?



D-mesons in pPb at 5.02 TeV - differences in theoretical descriptions



Data can probe nPDFs down to  $x \sim 10^{-5}$ , but x sensitivity differs between theoretical approaches:

- The HELAC framework [Lansberg & Shao, EPJ C77 (2017) 1] uses a matrix-element fitting method with  $2 \rightarrow 2$  kinematics producing a narrow distribution in x (can be used also for quarkonia)
- The SACOT- $m_{\rm T}$  scheme [Helenius & Paukkunen, JHEP 1805 (2018) 196] of GM-VFNS NLO pQCD gives a much wider *x*-distribution due to taking into account the gluon-to-HQ fragmentation

## D-mesons in pPb at 5.02 TeV - nPDFs reweighted

 $R_{\rm pPb}$  mostly insensitive to the differences

- → Reweighting with the two methods give compatible results for  $R_g^{\rm Pb}$  see the refs. for comparison with POWHEG+PYTHIA, FONLL
- $\blacksquare$  Large reduction in small-x uncertainties, probed down to  $x\sim 10^{-5}$
- EPPS16 and nCTEQ15 brought to a closer mutual agreement

Striking similarity with the results with dijets

→ Supports the validity of collinear factorization in pPb and the universality of nPDFs



#### [Kusina, Lansberg, Schienbein & Shao, PRL 121 (2018) 052004,



#### Section 3

W bosons at 8.16 TeV – Flavour separation?

## W bosons in pPb at 8.16 TeV





Increased statistics compared to the Run 1 5.02 TeV data set

Included in nNNPDF2.0 and nCTEQ15WZ

Potential probes of the flavour separation (and strangeness):

- $\bullet \ u\bar{d} \ (u\bar{s},c\bar{s}) \to W^+$
- $\blacksquare \ d\bar{u} \ (s\bar{u},s\bar{c}) \to W^-$

Remember: small-x, high- $Q^2$  quarks and gluons correlated by DGLAP evolution  $\rightarrow$  constraints for gluons

## Need to mitigate free-proton PDF uncertainty

Absolute cross sections carry large proton-PDF uncertainty!

Cannot be neglected when fitting the nPDFs

No *obvious* best way to use these data, but we should test different options:

- Use the absolute cross sections
  - $\rightarrow$  susceptible to the proton-PDF uncertainties, need to be accounted in the fit
- Use self-normalized cross sections
  - $\rightarrow$  cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Use forward-to-backward ratios
  - $\rightarrow$  more direct cancellation of the proton-PDF uncertainties, lose some data points
- Use nuclear modification ratios (with 8.0 TeV pp)
  - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement



#### as in nNNPDF2.0, nCTEQ15WZ

#### as in EPPS16

15/27

#### the current plan for EPPS2x

## Need to mitigate free-proton PDF uncertainty

Absolute cross sections carry large proton-PDF uncertainty!

Cannot be neglected when fitting the nPDFs

No *obvious* best way to use these data, but we should test different options:

- Use the absolute cross sections
  - $\rightarrow$  susceptible to the proton-PDF uncertainties, need to be accounted in the fit
- Use self-normalized cross sections
  - $\rightarrow$  cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Use forward-to-backward ratios
  - $\rightarrow$  more direct cancellation of the proton-PDF uncertainties, lose some data points
- Use nuclear modification ratios (with 8.0 TeV pp)
  - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement



#### as in nNNPDF2.0, nCTEQ15WZ

#### as in EPPS16

#### the current plan for EPPS2x

15/27

## Need to mitigate free-proton PDF uncertainty

Absolute cross sections carry large proton-PDF uncertainty!

Cannot be neglected when fitting the nPDFs

No *obvious* best way to use these data, but we should test different options:

- Use the absolute cross sections
  - $\rightarrow$  susceptible to the proton-PDF uncertainties, need to be accounted in the fit
- Use self-normalized cross sections
  - $\rightarrow$  cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Use forward-to-backward ratios
  - $\rightarrow$  more direct cancellation of the proton-PDF uncertainties, lose some data points
- Use nuclear modification ratios (with 8.0 TeV pp)
  - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement



#### as in nNNPDF2.0, nCTEQ15WZ

#### the current plan for EPPS2x

as in EPPS16

15/27

= 8.16 TeV

SNN

## Need to mitigate free-proton PDF uncertainty

 $d\sigma(\eta_{\mu})/d\sigma(-\eta_{\mu})$ 

1.2

0.8

0.6

0.4

Absolute cross sections carry large proton-PDF uncertainty!

Cannot be neglected when fitting the nPDFs

No *obvious* best way to use these data, but we should test different options:

- Use the absolute cross sections
  - $\rightarrow$  susceptible to the proton-PDF uncertainties, need to be accounted in the fit
- Use self-normalized cross sections
  - $\rightarrow$  cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain

 $\sqrt{s_{\rm NN}} = 8.16 \text{ TeV}$ 

- Use forward-to-backward ratios
  - $\rightarrow$  more direct cancellation of the proton-PDF uncertainties, lose some data points
- Use nuclear modification ratios (with 8.0 TeV pp)
  - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement



1.4

1.2

 $-\eta_{\mu}$ 

#### as in nNNPDF2.0, nCTEQ15WZ

#### as in EPPS16

15/27

#### the current plan for EPPS2x

# Need to mitigate free-proton PDF uncertainty

Absolute cross sections carry large proton-PDF uncertainty!

Cannot be neglected when fitting the nPDFs

No *obvious* best way to use these data, but we should test different options:

- Use the absolute cross sections
  - $\rightarrow$  susceptible to the proton-PDF uncertainties, need to be accounted in the fit
- Use self-normalized cross sections
  - $\rightarrow$  cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Use forward-to-backward ratios
  - $\rightarrow$  more direct cancellation of the proton-PDF uncertainties, lose some data points
- Use nuclear modification ratios (with 8.0 TeV pp)
  - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement

#### as in nNNPDF2.0, nCTEQ15WZ

#### as in EPPS16

15/27

#### the current plan for EPPS2x

#### N/A

#### How to propagate proton-PDF uncertainties into nPDF fit?

#### Work in progress

Use a theoretical covariance matrix method c.f. [Abdul Khalek *et al.*, Eur.Phys.J. C79 (2019) 931]

$$\chi^2 = (D - T)^{\rm T} \, (C + S^{\rm CT14})^{-1} \, (D - T),$$

where the CT14 covariances are calculated with



$$S_{ij}^{\mathsf{CT14}} = \sum_{k} \frac{y_i [S_{\mathsf{CT14},k}^+] - y_i [S_{\mathsf{CT14},k}^-]}{2} \frac{y_j [S_{\mathsf{CT14},k}^+] - y_j [S_{\mathsf{CT14},k}^-]}{2}$$

We can also propagate the covariances into those of other observables via

$$C^{\mathsf{new}} = J \, C \, J^{\mathrm{T}},$$

where  $\boldsymbol{J}$  is the Jacobian of the transformation



Note: It is the strong *positive* correlations which make the uncertainty reduction with ratios possible!

#### Reweighting results with absolute cross sections



#### Reweighting results with absolute cross sections



#### Reweighting results with absolute cross sections



#### Reweighting results with FB ratios



### Section 4

# Future opportunities with LHC - Lighter ions

## Data availability w.r.t. A



EPPS16 + LHC pPb dijets, D-mesons & 8.16 TeV Ws + JLab CLAS NC DIS

 $\sim 50\%$  of the data points are for Pb!

- $\textcircled{\sc blue}$  Good coverage of DIS measurements for different A
- $\stackrel{()}{=}$  DY data more scarce, but OK A coverage
- 🙁 Hadronic observables available only for heavy nuclei!

Light-ion runs at LHC could:

- Complement other light-nuclei DY data with W and Z production (strangeness!)
- Give first direct constraints (e.g. dijets, D-mesons) on light-nuclei gluon distributions!

## Data availability w.r.t. A



EPPS16 + LHC pPb dijets, D-mesons & 8.16 TeV Ws + JLab CLAS NC DIS

 $\sim 50\%$  of the data points are for Pb!

- Good coverage of DIS measurements for different A $\odot$
- DY data more scarce, but OK A coverage
- $(\mathbf{x})$ Hadronic observables available only for heavy nuclei!

Light-ion runs at LHC could:

- Complement other light-nuclei DY data with W and Z production (strangeness!)
- Give first direct constraints (e.g. dijets, D-mesons) on light-nuclei gluon distributions!

#### Average u and d quark modifications (in oxygen)

The average  $\boldsymbol{u}$  and  $\boldsymbol{d}$  valence and sea modifications

$$R^A_{u_{\rm V}+d_{\rm V}} = \frac{f^{p/A}_{u_{\rm V}} + f^{p/A}_{d_{\rm V}}}{f^p_{u_{\rm V}} + f^p_{d_{\rm V}}} \qquad R^A_{\bar{u}+\bar{d}} = \frac{f^{p/A}_{\bar{u}} + f^{p/A}_{\bar{d}}}{f^p_{\bar{u}} + f^p_{\bar{d}}}$$

are under control (from interpolation)

Oxygen fully isoscalar

- → No contribution from flavour asymmetry!
- From nPDF point of view, oxygen is "simpler" than lead

nNNPDF2.0 differs (again) from EPPS16 and nCTEQ15WZ due to not having fixed-target DY data

 Data from E772 indicate that there should be antishadowing for valence, but not for sea quarks



## Gluon and strange modifications (in oxygen)

No agreement for the shape of gluon modifications!

- → Can cause significant uncertainties e.g. for jet  $R_{\rm OO}$
- ! No direct data constraints available
- → We could expect major improvement from a LHC pO run

Large uncertainties also for the strange quark

- nNNPDF2.0 has smaller uncertainties here likely due to including NuTeV vFe CC DIS data (interpolation, again)
- Measuring EW bosons in pO/OO might be able to test these



# $A\mbox{-}dependence of gluon modifications$



Direct gluon constraints available only for heavy nuclei (most constraining: pPb dijets & D-mesons)

- $\rightarrow$  Gluons and small-x quarks poorly constrained for lighter nuclei
- $\rightarrow$  Significant parametrization dependence

How confidently can we interpolate the light-nuclei gluons from measurements at large A?

- $\blacksquare$  SMOG@LHCb can help for the large x
- → Need for lighter-ion pA runs!

## A case study: Dijet production in pO at 9.9 TeV

Similar setup as in the CMS 5.02 TeV pPb measurement

Total integrated pO cross section of  $\sim 80~\mu b$ 

- Grows with larger  $\sqrt{s_{\mathrm{NN}}}$ , decreases with smaller A
- $\blacksquare$  Compare with  $\sim 330~\mu b$  in pPb at 5.02 TeV
- Sufficient to give reasonable statistics even at relatively low luminosities

Here only single-differential

■ Going multi-differential would improve locality in *x* and *Q*<sup>2</sup> (requires more luminosity)

Question: Systematic uncertainties?

N.B. For each nPDF, I am using the corresponding baseline free-proton  $\mathsf{PDF}$ 

→ Calculations with nCTEQ15WZ do not include free-proton PDF uncertainties



\*not corrected for hadronization effects \*not corrected for efficiency

## Dijet production in pO at 9.9 TeV - free-proton uncertainties

**Problem:** absolute cross sections very sensitive to the used free-proton PDFs

Difficult to disentangle nuclear modifications from the free-proton d.o.f.s

N.B. In the EPPS framework, free-proton uncertainties enter both from the

- incoming proton PDFs:  $f_i^p$
- incoming bound-nucleon PDFs:  $f_i^{p/A} = R_i^A f_i^p$

Possible ways to mitigate the problem:

- Take forward-to-backward ratio  $(R_{\rm FB})$
- **Take nuclear modification ratio**  $(R_{pPb}^{(norm.)})$ 
  - requires a pp reference measurement at the same collision energy



\*not corrected for hadronization effects \*not corrected for efficiency Dijet  $R_{\rm FB}$  in pO at 9.9 TeV

Excellent cancellation of free-proton PDFs

Luminosity (and hadronization) uncertainties also (expected to) cancel!

Already  $\sim 1~{\rm nb}^{-1}$  can be expected to be enough to put new constraints on nPDFs

**Problem:** access only to nPDF small v.s. large x correlations – mixing different effects

- Forward shadowing and backward antishadowing pull to the same direction
- $\blacksquare$  Even rather different nuclear modifications can yield similar shape for  $R_{\rm FB}$



Dijet  $R_{\rm FB}$  in pO at 9.9 TeV

Excellent cancellation of free-proton PDFs

Luminosity (and hadronization) uncertainties also (expected to) cancel!

Already  $\sim 1~{\rm nb}^{-1}$  can be expected to be enough to put new constraints on nPDFs

**Problem:** access only to nPDF small v.s. large x correlations – mixing different effects

- Forward shadowing and backward antishadowing pull to the same direction
- $\blacksquare$  Even rather different nuclear modifications can yield similar shape for  $R_{\rm FB}$



# Dijet $R_{ m pO}^{ m norm.}$ in pO at 9.9 TeV

Excellent cancellation of free-proton PDFs

 $\rightarrow$  Direct access to nuclear modifications

Luminosity (and hadronization) uncertainties also (expected to) cancel!

Already  $\sim 1 \ {\rm nb}^{-1}$  can be expected to be enough to put new constraints on nPDFs (if we have sufficient statistics for the pp reference)

→ Can resolve different nPDF parametrisations!

**Problem:** We might not expect to have the pp reference at 9.9 TeV

Could we use a mixed energy ratio pO(9.9 TeV)/pp(8.8 TeV)?



# Dijet $R_{ m pO}^{ m norm.}$ in pO at 9.9 TeV

Excellent cancellation of free-proton PDFs

→ Direct access to nuclear modifications

Luminosity (and hadronization) uncertainties also (expected to) cancel!

Already  $\sim 1 \ {\rm nb}^{-1}$  can be expected to be enough to put new constraints on nPDFs (if we have sufficient statistics for the pp reference)

→ Can resolve different nPDF parametrisations!

**Problem:** We might not expect to have the pp reference at 9.9 TeV

Could we use a mixed energy ratio pO(9.9 TeV)/pp(8.8 TeV)?



Thank you!

#### PDF reweighting: different approximations [Eskola, PP & Paukkunen, Eur.Phys.J.C 79 (2019) 511]

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs without performing a full global fit

$$\chi^2_{\text{new}}(\mathbf{z}) = \chi^2_{\text{old}}(\mathbf{z}) + \sum_{ij} \left( y_i(\mathbf{z}) - y_i^{\text{data}} \right) C_{ij}^{-1} \left( y_j(\mathbf{z}) - y_j^{\text{data}} \right)$$



#### Cancellation of hadronization effects



# Hadronization uncertainty

Parton jets have higher cross section for R = 0.3jets with same kinematic selections compared to hadron jets

Parton jets are harder fragmenting

After self normalization effect of hadronization is negligible

## CMS dijets at **pp**



- Predicted NLO distributions somewhat wider than the measured spectra
- $\blacksquare$  High- $p_{\rm T}^{\rm ave}$  midrapidity robust against scale variations and LO-to-NLO effects
  - $\rightarrow$  can expect NNLO corrections to be small in this region
  - $\boldsymbol{\rightarrow}$  observed discrepancy seems to be a PDF related issue
- Refitting might be needed to improve agreement with data
  - $\rightarrow$  study the impact with the reweighting method

### CMS dijets at pp - CT14 reweighted



## CMS dijets at **pPb**



- pPb data deviates from NLO calculations *almost the same way* as the pp data
  - → had we not seen the same deviations in pp, we might have interpreted this as a fault in our nuclear PDFs
- Compared to pp case we have additional suppression in data compared to theory at forward rapidities
  - $\rightarrow$  implication of deeper gluon shadowing

## CMS dijets at **pPb** after CT14 reweighting [Eskola, PP & Paukkunen, Eur.Phys.J.C 79 (2019) 511]



- Modifications needed in CT14 to describe pp data have large impact on pPb predictions
  - → it is imperative to understand the pp baseline before making far-reaching conclusions from pPb data
- Using these data directly in nuclear PDF analysis with CT14 proton PDFs would lead to
  - overestimating nuclear effects
  - large scale-choice bias

→ Consider nuclear modification factor instead

# Heavy-flavour production mass schemes

#### FFNS

In fixed flavour number scheme, valid at small  $p_{\rm T},$  heavy quarks are produced only at the matrix element level

Contains  $\log(p_{\rm T}/m)$  and  $m/p_{\rm T}$  terms

# 

#### ZM-VFNS

In zero-mass variable flavour number scheme, valid at large  $p_{\rm T},$  heavy quarks are treated as massless particles produced also in ISR/FSR

Resums  $\log(p_{\mathrm{T}}/m)$  but ignores  $m/p_{\mathrm{T}}$  terms



#### **GM-VFNS**

A general-mass variable flavour number scheme combines the two by supplementing subtraction terms to prevent double counting of the resummed splittings, valid at all  $p_{\rm T}$ 

Resums  $\log(p_{\rm T}/m)$  and includes  $m/p_{\rm T}$  terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation - large contribution to the cross section!

## EPPS16 reweighted LHCb D-meson $R_{\rm pPb}$

#### [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]



- Data well reproduced with the reweighted results
- Significant reduction in EPPS16 uncertainties especially in forward bins
- Good agreement with data below cut no physics beyond collinear factorization needed

## nCTEQ15 reweighted LHCb D-meson $R_{\rm pPb}$ [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

Forward





- Uncertainties smaller to begin with in the forward direction (less flexible small-x parametrization) while larger in backward – almost identical results
- Data well reproduced

#### D-mesons at 8.16 TeV - do we have tension?



QM2019 LHCb summary talk:

"Tension between data and nPDFs predictions. Additional effects required."

→ Theoretical description matters, HELAC predicts much smaller nPDF uncertainties for  $R_{\rm FB}$  than SACOT- $m_{\rm T}$ !

The slope of the 8.16 TeV data still differs from that in nPDF predictions and in 5.02 TeV data

→ How can we explain the difference?

## W/Z bosons in pPb at 5.02 TeV and 8.16 TeV – impact in nNNPDF2.0



Flexible neural-network parametrization (256 free parameters)

Includes CMS and ATLAS W/Z data

Compared to DIS-only fit:

- $\blacksquare$  Preference for EMC effect both in u and d
- Enhanced shadowing for all quarks
- Some preference for gluon shadowing & antishadowing



W/Z bosons in pPb at 5.02 TeV and 8.16 TeV – impact in nCTEQ15WZ



Includes also ALICE & LHCb W/Z data

 $\rightarrow$  Most extensive EW-boson data set to date

Compared to nCTEQ15:

- $\blacksquare$  Additional freedom for s needed to describe the data
  - much larger uncertainty
- Less gluon shadowing

|             |        |           | $\sqrt{s_{NN}}$ [TeV] |
|-------------|--------|-----------|-----------------------|
| Data overvi | ew     |           |                       |
| ATLAS       | Run I  | $W^{\pm}$ | 5.02                  |
| ATLAS       | Run I  | Ζ         | 5.02                  |
| CMS         | Run I  | $W^{\pm}$ | 5.02                  |
| CMS         | Run I  | Ζ         | 5.02                  |
| CMS         | Run II | $W^{\pm}$ | 8.16                  |
| ALICE       | Run I  | $W^{\pm}$ | 5.02                  |
| LHCb        | Run I  | Ζ         | 5.02                  |
|             |        |           |                       |

#### Future prospects: Forward photons with FoCal



Isolated photons at forward rapidities are a good probe of the nuclear small-x gluons

- Isolation cut reduces the fragmentation component
  - → enhanced small-x sensitivity [Helenius et al., JHEP 09 (2014) 138]
- Test for the possible onset of non-linear QCD effects
- Test for the factorization & process independence (universality) of nPDFs

Constraints from  $D^0$ s already more stringent than what we can expect from FoCal

## EW bosons in pO and OO?

EW probes are more luminosity hungry

- $\blacksquare$  We would need  $\sim 2~{\rm pb}^{-1}$  for pO to get the same statistics as in the 8.16 TeV pPb run
- Larger cross section in OO → less luminosity needed
  - Accurate determination of the luminosity uncertainty important

Large part of the uncertainties in these observables come from the poorly known gluons

• These we can constrain already with the hadronic observables in pO

(EW bosons still an important check for factorization / nPDF universality)

Since u/d flavour asymmetry does not contribute (isoscalarity), measuring W/Z bosons in pO/OO could provide unique constraints for strangeness nuclear modifications

 $\rightarrow$  Requires a further study



#### Limits of applicability – large and small x

Large x subject to target-mass and higher-twist corrections

- Do these have sizable effect?
- Can we still get a good fit with traditional nPDFs? (Yes)
- Any need for isospin-dependent modifications?
   [Paukkunen & Zurita, Eur.Phys.J.C 80 (2020) 381]
   [Segarra *et al.*, arXiv:2012.11566]

Expect gluon density to saturate at small  $\boldsymbol{x}$ 

- When does the simple DGLAP picture break down?
- What experimental signatures do we need?

Small-x corrections already in the linear phase (BFKL)

- Do these become important before saturation kicks in?
- $\rightarrow$  Many opportunities for the EIC & LHeC



