Top quark evidence in PbPb collisions at $\sqrt{(s_{NN})} = 5.02$ TeV in CMS

Inna Kucher

Laboratoire Leprince-Ringuet

IPNO seminar 13/02/2020

Top quark candidate in PbPb 2018 collisions

PbPb environment is much busier than pp one

(track multiplicity is ~ 10k in PbPb vs pp ~ 750)

CMS detector

All subsystems are necessary to detect top quark decay particles

Analysis strategy

Top Pair Branching Fractions

Backgrounds :

- $ee/\mu\mu$: DY+jets (DY = ll' pairs coming from Z or γ^*) with MG5_aMC@NLO
- eµ: Z→ ττ with MG5_aMC@NLO Non-prompt = W+jets and QCD multi-jets with heavy flavor decays (from data using event-mixing technique)
- Small contributions from tW with NLO POWHEG; ZZ, WW and WZ (VV) with POWHEG

<u>Analysis was blinded</u> to the mass region of interest in data

Electron reconstruction

Electron (e) reconstruction : combines tracker and ECAL information

Electrons

JINST 10 (2015) P06005

Muon reconstruction

Muon (µ) reconstruction : combines tracker and muon stations information

Muons

JINST 13 (2018) P06015

Lepton reconstruction and identification

Muon (µ) reconstruction : combines track and muon stations information

Electron (e) reconstruction : combines track and ECAL information

 μ /e identification and selections :

- \rightarrow identification criteria were optimized for PbPb environment
- \rightarrow isolation criteria :

 $I_{rel} = [I - UE(\rho)]/p_{T}; I - p_{T}$ sum of all particles inside the cone around the μ/e direction UE(ρ) - median energy density of the underlying event

 I_{rel} < 0.08 (-0.06) for $\mu(e) \rightarrow$ flattens the dependence on the centrality

- \rightarrow kinematic selections : p_T > 20(25) GeV and $|\eta| < 2.4(2.1)$ for $\mu(e)$
- \rightarrow µ and e are opposite charged

Dilepton mass

ee

 $t\bar{t} \rightarrow |v_{\mu}b|'v_{\mu}\bar{b}$

Three dilepton combinations are possible : ee, µµ, eµ

Distributions are **prefit** : MC represents the **expected** yields

μμ eμ 1.7 nb⁻¹ (√s_{NN}=5.02 TeV) **CMS** Preliminary **CMS** Preliminary 1.7 nb⁻¹ (√s_{NN}=5.02 TeV) **CMS** Preliminary 1.7 nb⁻¹ ($\sqrt{s_{NN}}$ =5.02 TeV) Events Events Events Events 60 tW Data tW Data Data
tW $Z \rightarrow ee$ $- Z \rightarrow \mu \mu$ eμ prefit prefit prefit ١tŦ ■Nonprompt^{_} Nonprompt -Nonprompt - Z/γ^* Z/γ^* 50 5000 2000 🕅 Norm. unc. Morm. unc. Norm. unc. 40 4000 1500 30 3000 1000 20F 2000 500 10 1000 Data/Pred. 0 0 0 1 2 2 ata/Pred. Data/Pred. 1.5 0.5 õ 200 80 85 90 95 100 105 80 85 90 95 100 105 50 100 150 250 m(l[±]l[∓]) [GeV] m(l[±]l[∓]) [GeV] m(l[±]l[∓]) [GeV]

ee, µµ are dominated by Z boson production To suppress Z : discard events with (76 < m_{μ} < 106 GeV)

eµ – the cleanest channel to extract tt

BDT discriminant

Boosted decision tree (BDT) algorithm - combines lepton information in one discriminant

Trained with signal = $t\bar{t}$ vs background = DY

Lepton information :

- leading lepton p_{τ}
- momentum imbalance between leptons
- dilepton system p₊
- dilepton system |ŋ|
- absolute azimuthal separation of the leptons •
- scalar sum of the $|\eta|$ of the two leptons

 $p_{-}(l^{\pm}l^{\mp})$ [GeV]

BDT discriminant : pre-fit

BDT discriminant : $t\bar{t}$ peaks at higher values of BDT ~ 0.8-1.0, DY peaks ~ 0

eµ channel : data points are lower than expectation

Jets in CMS

Jet reconstruction : combines tracker, ECAL and HCAL information

JINST 12 (2017) P10003

Jets in PbPb collisions

Before UE subtraction

After UE subtraction

Particle-by-particle: correct the 4-momentum of a jet and substructure

JHEP 1406 (2014) 092

b-jet identification

<u>b-hadrons</u>

- Fragment hard, zb ~ 0.7 0.8
- + Large decay multiplicity, $\langle n_{ch} \rangle \sim 5$
- Long-lived hadrons cτ ~ 500 μm → mm – cm displacement in lab frame
- Tend to decay semi-leptonically (20% for µ and e)

Method : exploit displaced vertices and tracks, both b-hadron and subsequent c-hadron decays

Method was re-optimized for PbPb environment The working point was tuned to yield ~65%(5%) efficiency for b-(other-) jets

Lepton + b-jet analysis

 $t\bar{t} \rightarrow lv_l b l'v_l b$

Requiring b-jets in the analysis improves expected $t\bar{t}$ significance.

b-jet treatment :

- all jets with $p_{_{\rm T}}$ > 30 GeV and $|\eta|$ < 2.0 are sorted by b-tag discriminant values
- two jets with the highest discriminant value are kept in the analysis

- count how many pass the b-tagging working point \rightarrow categorize events in 0b, 1b,2b
- quenching: moves jets below p_T threshold leading to decreased probability of finding the b-jets → systematic uncertainty based on parametrization of the energy loss <u>Arleo, JHEP 0211 (2002) 044</u>

BDT pre-fit in lepton+bjet analysis

tt → lvıb ľvı́b

BDT discriminant for 0b, 1b and 2b jets categories

eµ channel : data points are lower than expectation in the 1b and 2b categories, which have the highest S/B

BDT discriminant is an input for a statistical test : likelihood fit

Maximum likelihood method

Likelihood function: how theoretical assumption is compatible with observed data

Maximum likelihood method estimates the best values of the parameters to describe data

Parameters :

- Signal strength (µ)
- Signal contribution : yields and shape
- Background contribution : yields and shape
- Nuisance parameters : e.g. lumi, p_τ(Z), quenching, b-tag eff., lepton ID eff., ...

Significance (σ) of an excess over the background-only expectation : ratio at μ = 0

Expected :
$$\mu = 1$$
 and $\sigma = \sigma_{exp}$

"Expected" includes nPDF effects, but not the jet quenching

<u>Profile likelihood ratio example</u>

Fit and results

$t\overline{t} \rightarrow lv_l b l'v_l \overline{b}$

- Pre-fit deficits drive final μ =0.81±0.26
- Significance: 3.8σ(obs.), 4.8σ(exp.), 18% p-val
- Post-fit distributions in very good agreement

Fit and results

$t\bar{t} \rightarrow lv_{\mu}b l'v_{\mu}\bar{b}$

- Deficit is slightly enhanced: µ=0.64±0.22
 - compatible with inclusive analysis
- Significance: 4.0σ(obs.), 5.8σ(exp.), 5% p-val
- Post-fit distributions in very good agreement

Event yields

In total **1768** events were observed in the data :

\rightarrow 43 ± 11 tt events extracted from the likelihood fit

	Final state								
Process	e^+e^-			$\mu^+\mu^-$			${f e}^\pm\mu^\mp$		
-	0b	1b	2b	0b	1b	2b	0b	1b	2b
Z/γ^*	389.8 ± 15.4	$40.4{\pm}2.7$	$4.4{\pm}0.8$	1027.5 ± 27.3	136.1 ± 5.7	14.1 ± 1.7	35.1 ± 1.7	$4.4{\pm}0.9$	$0.7{\pm}0.2$
Nonprompt	17.3 ± 2.2	$1.4{\pm}0.2$	≤ 0.1	$7.6 {\pm} 1.0$	$0.8{\pm}0.1$	≤ 0.1	17.1 ± 1.9	$4.0{\pm}0.4$	≤ 0.1
tW	$1.1 {\pm} 0.2$	$0.9{\pm}0.2$	≤ 0.1	$1.8{\pm}0.4$	$1.3 {\pm} 0.3$	$0.2{\pm}0.1$	$3.4{\pm}0.7$	$2.5{\pm}0.5$	$0.4{\pm}0.1$
VV	$1.9 {\pm} 0.3$	$0.2{\pm}0.1$	≤ 0.1	$3.3 {\pm} 0.6$	$0.4{\pm}0.1$	≤ 0.1	$5.4{\pm}0.9$	$0.6 {\pm} 0.1$	≤ 0.1
Total background	410.2 ± 15.1	$42.8{\pm}2.7$	$4.5{\pm}0.8$	1040.2 ± 27.1	$138.6 {\pm} 5.7$	$14.4{\pm}1.8$	61.1 ± 2.9	11.5 ± 1.3	$1.1 {\pm} 0.2$
-				_					
t ī signal	$2.8{\pm}0.8$	$3.2{\pm}0.8$	$1.3{\pm}0.4$	$4.5 {\pm} 1.2$	5.1 ± 1.2	$1.9 {\pm} 0.6$	9.7±2.5	$10.7 {\pm} 2.4$	$4.0{\pm}1.2$
Observed (data)	410	48	9	1064	139	8	70	14	6

- ee/µµ only matters in 1b and 2b categories
- best S/B in eµ channel
- very high purity in 2b category

tt cross-section

	CMS Preliminary	Source	$\Delta \mu / \mu$		
PhPh 1 7 nh ⁻¹ (\sqrt{s} -5.02 TeV)		bource	leptonic-only	leptonic+b-tagged	
1 51 5, 117 HB , (¥3 _{NN} =5.52 104)	NNLO+NNLL Top++	Total statistical uncertainty	0.27	0.28	
2l _{os} +b-tags	EPPS16 NLO NNLO+NNLL Top++	Total systematic experimental uncertainty	0.17	0.19	
		Background normalization	0.12	0.12	
	3-4	Background and tt signal distribution	0.07	0.08	
		Lepton selection efficiency	0.06	0.06	
		Jet energy scale and resolution	_	0.02	
		btagging efficiency	—	0.06	
pp, 27.4 pb ⁻¹ , (√s=5.02 TeV)	CT14 NNLO NNLO+NNLL Top++	Integrated luminosity	0.05	0.05	
	NNPDF30 NNLO	Total theoretical uncertainty	0.05	0.05	
2l _{os} +jets/l+b-tags		nPDF, $\mu_{\rm R}$, $\mu_{\rm F}$ scales, and $\alpha_{S}(m_{\rm Z})$	< 0.01	< 0.01	
JHEP 03 (2018) 115	Exp. unc.: stat_stat⊕syst	Top quark and Z boson $p_{\rm T}$ modeling	0.05	0.05	
	Th. unc.: pdf pdf⊕scales	Top quark mass	< 0.01	< 0.01	
		Total uncertainty	0.32	0.34	
0 20 40 60	$\sigma / A^2 [pb]$	20			

Two analyses yield consistent cross-sections

Statistical uncertainty dominates !

Summary

• CMS provide a strong evidence of the top quark production in PbPb collisions :

μ = 0.81 ± 0.25 ; 3.8σ (4.8σ exp.) - lepton only analysis, μ = 0.64 ± 0.21 ; 4.0σ (6.0σ exp.) - lepton +b-jet analysis

• tt production cross-section in PbPb collisions :

2.02 ± 0.69 μb - lepton only analysis, 2.56 ± 0.82 μb - lepton + b-jet analysis

- The results are compatible between 2 analysis, as well as with expectations from scaled pp cross-section and QCD computations
- First step towards the top quark as a tool to probe the QGP evolution

Backup slides

Signal strength and significance per channel

Fit alternative	Signal strength μ	Significance
$e^{\pm}\mu^{\mp}$ (leptonic only)	$0.66^{+0.24}_{-0.22} \ (1.00^{+0.27}_{-0.25})$	3.3 (4.7)
$\mathrm{e^+e^-}$, $\mu^+\mu^-$, and $\mathrm{e^\pm}\mu^\mp$ (leptonic only)	$0.81^{+0.26}_{-0.23} \ (1.00^{+0.26}_{-0.23})$	3.8 (4.8)
$e^{\pm}\mu^{\mp}$ (leptonic+b-tagged)	$0.61^{+0.23}_{-0.20} \ (1.00^{+0.26}_{-0.23})$	3.8 (5.3)
e^+e^- , $\mu^+\mu^-$, and $e^\pm\mu^\mp$ (leptonic+b-tagged)	$0.64^{+0.22}_{-0.20} \ (1.00^{+0.24}_{-0.21})$	4.0 (6.0)

Analytical parametrization of the energy loss

- R_{AA} based fits to different spectra
- scaling behavior f(pT/wc) from \rightarrow
- data indicates universal high-p_ tehavior
- use to parametrize mean constituent energy loss (1-7 GeV depending on the centrality)
- use estimate to dampen jet energy in MC
- quenching effect around 7%

<u>Arleo, PRL. 119, 062302</u>

Maximum likelihood method

Likelihood function: how theoretical assumption is compatible with observed data

Maximum likelihood method estimates the values of the parameters

$$\mathcal{L}(\mu, \boldsymbol{\theta}) = \prod_{i=1}^{M} \frac{(\mu s_i + b_i)}{n_i!} e^{-(\mu s_i + b_i)}$$

$$\lambda(\mu) = rac{\mathcal{L}(\mu, \hat{\hat{oldsymbol{ heta}})}{\mathcal{L}(\hat{\mu}, \hat{oldsymbol{ heta}})}$$

$$\lambda(\mu = 0) = \frac{\mathcal{L}(0, \hat{\boldsymbol{\theta}})}{\mathcal{L}(\hat{\mu}, \hat{\boldsymbol{\theta}})}$$

- Signal strength = µ
- Signal contribution = s_i (according to a nominal model)
- Background contribution = b
- Nuisance parameters = θ
- $\hat{\hat{ heta}}$ is the value of heta maximizing \mathcal{L} for a certain μ
- $\hat{\mu}$ and $\hat{\pmb{\theta}}$ correspond to the true global maximum likelihood
- the profile likelihood ratio (λ) :

 $\to \lambda \sim 1-data$ is compatible with signal expectation $\to \lambda \sim 0-data$ is compatible with background-only expectation

 $s=\sqrt{-2Log\lambda(\mu=0)}$ - significance of an excess over the background-only expectation

Non-prompt bkg estimation

event mixing :

- same flavor combination mixed
- pick 100 events, exclude the same event
- exclude repetitions
- each combination gets a distance assigned
- distance based on kNN algorithm using : centrality, rho, iso, $p_{\tau \mu}$, $p_{\tau \mu}$

use set of closest events in this distance as central shape:

• furthest distance as alternative shape for systematic treatment

normalize the distribution to the same-sign data sample yield

b-jet production channels at LHC

LHC, pp collisions at 14 TeV

First Heavy Ion measurements convolute large contributions from NLO b-quark production processes

Energy loss is expected to depend on flavor → measure heavy flavor jets suppression

Quenching of b-jets

Jet spectra corrected for detector resolution effects for several centrality selections and pp

Suppression consistent with the one observed from inclusive jets

bb correlations

To suppress the contribution of gluon splitting and probe LO b-jet production : look at pairs of b jets that are back-to-back in azimuth.

No clear difference between pT balance of inclusive and b-dijets

Data from Run 3 will allow to make a conclusive statement

Underlying event in pp and PbPb collisions

Underlying Event (UE) - particles not associated with the hardest parton-parton process quantified as transverse momentum density (p)

PileUp (PU) – concurrent interactions coming from the same bunch crossing

UE in pp with <PU> ~ 200 looks like central PbPb

UE subtraction : constituent subtraction

Particle-by-particle: correct the 4-momentum of a jet and substructure

Repeat until no ghosts/particles left

Remaining particles get clustered into a jet