Large anisotropies in the Little Bang

Heavy ion seminar IPN Orsay, March 20th, 2014

Jean-Yves Ollitrault, Institut de physique théorique, Saclay (France) <u>http://ipht.cea.fr</u>

Li Yan, JYO, arXiv:1312.6555, PRL 112 (2014) 082301 Li Yan, JYO, Art Poskanzer, in preparation

Anisotropic flow

• Particles are emitted with a *probability distribution* that is not isotropic in azimuthal angle

$$P(\mathbf{\phi}) = I + 2 \sum_{n>0} \mathbf{v}_n \cos(n(\mathbf{\phi} - \mathbf{\psi}_n))$$

- v_n≡anisotropic flow
 v₂≡elliptic flow
 v₃≡triangular flow...
- Finite number of particles → trivial anisotropies from statistical fluctuations.
- v_n can be measured only after statistical fluctuations are subtracted ("unfolded")

Flow fluctuations

- v_n fluctuates event to event (PHOBOS, 2005)
- v_n itself has a *probability distribution* for a given system and centrality.

New data in Pb-Pb

The probability distribution of v_2 , v_3 , v_4 for various centralities

ATLAS 1305.2942

New data in p-Pb

First 2 cumulants of the distribution of v_2 (less detailed than the full distribution)

$$v_{2}{2} \equiv (\langle v_{2}^{2} \rangle)^{1/2} \\ v_{2}{4} \equiv (2\langle v_{2}^{2} \rangle^{2} - \langle v_{2}^{4} \rangle)^{1/4}$$

If v_2 doesn't fluctuate, $v_2{2}=v_2{4}=v_2$

In general $v_2{4} < v_2{2}$

CMS 1305.0609

Do we understand these new data?What can we learn from them?

The origin of anisotropic flow

Initial transverse density profile

Expansion

Final distribution

Elliptic flow v₂

Triangular flow v_3

Initial anisotropies

= Fourier decomposition of the initial density profile $\rho(x,y)$

Gale Jeon Schenke 1301.5893

 $\epsilon_{n} \equiv \frac{\int r^{n} e^{in\phi} \rho(r,\phi) r dr d\phi}{\int r^{n} \rho(r,\phi) r dr d\phi}$

ε₂≡initial eccentricityε₃≡initial triangularity

 $|\varepsilon_n| < I$ by definition

 v_n fluctuations are due to ε_n fluctuations

Problem: can we disentangle the initial anisotropy from the response?

A long-standing problem in heavy-ion physics: for any model of initial conditions (Glauber and CGC), i.e., for any ε_n , one can tune the viscosity — the response K_n to match the observed v_n

Is there a general law that describes anisotropy fluctuations?

- If we know the statistics of the initial \mathcal{E}_n , then the distribution of observed v_n is the distribution of \mathcal{E}_n , rescaled by the response K_n
- State of the art (as of 2013): Gaussian fluctuations $P(\epsilon_n) \propto \epsilon_n \exp(-\epsilon_n^2/\sigma^2)$ Voloshin et al 0708.0800
- Then the distribution of v_n is also a Gaussian, of width $K_n x \sigma$: we are still unable to disentangle the initial state from the response.

The statistics of initial fluctuations

$$\epsilon_{2} \equiv \frac{\left|\int r^{2}e^{2i\phi}\rho(r,\phi)rdrd\phi\right|}{\int r^{2}\rho(r,\phi)rdrd\phi}$$

central p+Pb collision: initial density $\rho(\mathbf{r}, \boldsymbol{\varphi})$ = independent of $\boldsymbol{\varphi}$ up to fluctuations

small system: large
fluctuations & anisotropies

Monte-Carlo Glauber simulation

Is there a simple law that describes this distribution?

Gaussian?

Central limit theorem

$$P(\boldsymbol{\epsilon_2}) = 2(\boldsymbol{\epsilon_2}/\boldsymbol{\sigma}^2) \exp(-\boldsymbol{\epsilon_2}^2/\boldsymbol{\sigma}^2)$$

Not a good fit. Does not implement the condition $\epsilon_2 < 1$

New "Power" distribution

N_{events}

$$P(\varepsilon_2) = 2\alpha\varepsilon_2(1-\varepsilon_2^2)^{\alpha-1}$$

Equivalent to Gaussian for $\alpha >> 1$

Naturally implements the condition $\epsilon_2 < 1$.

Exact result for N=2 α +1 pointlike sources with Gaussian distribution: JYO, PRD46(1992)229

Much better fit to Monte-Carlo results!

Testing the *Power* distribution for **E**₃ in Au-Au collisions

fits to Monte-Carlo Glauber by Art Poskanzer

Universality of initial anisotropy fluctuations

The *Power* distribution fits several models of initial conditions (MC Glauber, MC KLN, IP-Glasma, DIPSY) when the anisotropy is solely created by fluctuations: E₂ in p-p collisions, E₂ and E₃ in p-Pb collisions, E₃ in Pb-Pb or Au-Au collisions.

Li Yan, JYO, PRL 112 (2014) 082301

• We postulate that it is universal, to a good approximation.

Natural explanation for $v_2{4}$ in pPb

Our new *Power* distribution naturally predicts a large v₂{4} in p-Pb.

Consequences & predictions

- Using as input the experimentally measured ratio vn{4}/vn{2}
- Quantitative prediction for higher-order cumulants vn{6} and vn{8}
- We can read off the rms anisotropy ε_n{2}, a property of the initial state, directly from experimental data

Generalization to **E**₂ in Pb-Pb

 For ε₂ in non-central Pb-Pb or Au-Au collisions, there is a mean anisotropy in the reaction plane in addition to fluctuations: requires a generalized distribution with I extra parameter: the *Elliptic Power* distribution

$$\frac{dn}{d\varepsilon} = \frac{2}{\pi} \varepsilon \alpha (1 - \varepsilon^2)^{(\alpha - 1)} (1 - \varepsilon_0^2)^{(\alpha + 1/2)} \int_0^\pi (1 - \varepsilon_0 \varepsilon \cos \phi)^{-(1 + 2\alpha)} d\phi$$

Reduces to the Power distribution for $\varepsilon_0 = 0$

Li Yan, JYO, Art Poskanzer, in preparation

Testing the Elliptic Power distribution for ε₂

fits to Monte-Carlo Glauber by Art Poskanzer

Fitting ATLAS v₃ and v₂ distributions with rescaled *Power* and *Elliptic-Power*

We obtain good fits to ATLAS data for v₂ and v₃ for all centralities

Extracting the hydro response from ATLAS data

As expected from viscous effects, the response decreases for more peripheral collisions.

As expected, viscous decrease is faster for v_3 than for v_2

Extracting the QGP viscosity from ATLAS data

Viscous hydro fits return a value of η/s close to 0.1.

Big Bang versus Little Bang

Small anisotropies observed in the cosmic microwave background are thought to originate from quantum fluctuations in the early Universe.

Anisotropic flow at RHIC and LHC is a similar phenomenon, occurring within a tiny system with large fluctuations.

The non-Gaussianity of these fluctuations, and the fact that they are universal, allows us to disentangle initial fluctuations from the response.

Conclusions, perspectives

- Direct evidence from experimental data that anisotropic flow in p-Pb and Pb-Pb collisions is driven by large anisotropies in the initial state: the statistics of ϵ_n hits the boundary $\epsilon_n < 1$
- The statistics of large fluctuations is not described by the central limit theorem but nevertheless universal to a good approximation
- We can extract both the initial anisotropy and the "hydrodynamic" response K_n from experimental data without any prior assumption about the initial state. Toward the first robust measurement of the viscosity of the QGP (work in progress).

Backup

Elliptic flow v₂ versus initial eccentricity E₂

Each point=different initial density profile. v_2 is almost perfectly linear in ε_2

Triangular flow v₃ versus initial triangularity E₃

 v_3 is also strongly correlated with ε_3

Cumulants

- 2-dimensional Gaussian: Wick's theorem
 <ε⁴>=2<ε²>² where <...>=average over events
- Define $\epsilon{2} = \langle \epsilon^2 \rangle^{1/2}$ (rms anisotropy)

 $\epsilon{4} = (2 < \epsilon^2 > 2 - < \epsilon^4 >)^{1/4}$

- ε{4}=0 for Gaussian.
- The power distribution predicts a universal, relation between ε{4} and ε{2}

Prediction of the power distribution

Pointlike sources with Gaussian distribution: power distribution=exact=test of Monte-Carlo

Each point: different number of hit nucleons in target

Each point: different number of hit nucleons in target

Each point: different centrality Pb-Pb: Larger system: smaller anisotropies

Each point: different centrality Pb-Pb: Larger system: smaller anisotropies

data from Avsar Flensburg Hatta JYO Ueda 1009.5643 Each point: different parton multiplicity

Elliptic anisotropy in Pb-Pb

Driven by almond shape of overlap area, not fluctuations: Deviates from the power distribution

Applying the power distribution to experimental data

If $v_n = K_n \epsilon_n$, with constant K_n

then $v_n{4}/v_n{2}=\epsilon_n{4}/\epsilon_n{2}$

we can read off the parameter α from the experimentally-measured ratio v_n {4}/ v_n {2}

Fitting the distribution of v_n

The ATLAS distribution has published the distribution of v_n with n=2,3,4 in Pb-Pb collisions. We can fit these data assuming $v_3 \approx \kappa_3 \epsilon_3$ and a power distribution for ϵ_3

ATLAS 1305.2942 25 ATLAS 40-45% fit 20 The fit returns 15 $P(v_3)$ $K_3 = 0.18 \pm 0.02$ 10 in agreement with viscous hydrodynamics 5 0 0.02 0.08 0.04 0.06 0.1 0.12 0 V₃ Yan, Poskanzer, JYO, in preparation

Simple predictions from eccentricity scaling

- Experimentally, one can measure moments (or cumulants) of the distribution of v_n.
- Eccentricity scaling implies that, e.g. $\langle v_n^4 \rangle / \langle v_n^2 \rangle^2 = \langle \epsilon_n^4 \rangle / \langle \epsilon_n^2 \rangle^2$
- Thus one can check if a particular model of the initial state is compatible with data.

Eccentricity scaling versus data

Higher-order cumulants

Expand the generating function

 $G(k)=ln < exp(ik.\epsilon) >$

where k and ε are 2-d vectors in the tranverse plane, to order k^{2n} .

Asymptotic behavior for large n = singularity of G(k) = zero of the Fourier transform of the distribution of ε .

Higher-order cumulants (predicted by the power distribution)

ε{n} quickly converges as order n increases

Anisotropic flow \Rightarrow correlations at large $\Delta\eta$

CMS arXiv:1105.2438

Number of pairs of particles versus relative azimuthal angle and pseudorapidity (~polar angle) in central Pb-Pb collisions

Anisotropic flow

