Quarkonium production in p-Pb collisions with ALICE

Cynthia Hadjidakis

Heavy ion meeting April 17th 2014

Quarkonium production in p-Pb collisions with ALICE

- Probing Quark Gluon Plasma and Cold Nuclear Matter with quarkonia
- First p-Pb measurements at $\sqrt{s_{NN}} = 5.02$ TeV: J/ ψ , $\psi(2S)$ and $\Upsilon(1S)$
- Extrapolating CNM effect to Pb-Pb measurements at $\sqrt{s_{NN}} = 2.76$ TeV: J/ ψ

ALICE measures essentially inclusive quarkonium production

Inclusive J/ $\psi \approx 90\%$ of prompt J/ ψ (60% direct J/ $\psi + 30\%$ from $\chi_c + 10\%$ from $\psi(2S)$) + 10% of non-prompt J/ ψ (from B hadron decay)

Probing the Quark Gluon Plasma with quarkonia

Properties of quarkonia

- bound states of heavy quark Q and anti-quark \overline{Q}
- stable and tightly bound
- heavy quark pair produced via gluon fusion in high energy hadronic collisions
- $Q\overline{Q}$ produced in the initial hard partonic collisions ($\tau \approx 1/m_Q \approx 0.05 0.15$ fm/c)
- details of hadronization $Q\overline{Q} \rightarrow J/\psi$ not well understood

Probing the Quark Gluon Plasma with quarkonia

Properties of quarkonia

- bound states of heavy quark Q and anti-quark \overline{Q}
- stable and tightly bound
- heavy quark pair produced via gluon fusion in high energy hadronic collisions
- $Q\overline{Q}$ produced in the initial hard partonic collisions ($\tau \approx 1/m_Q \approx 0.05-0.15$ fm/c)
- details of hadronization $Q\overline{Q} \rightarrow J/\psi$ not well understood

Quarkonium melting in QGP

- QGP = formed at high temperature and density, plasma of deconfined partons
- at T >> 0, high density of colour charge in the medium induces Debye screening
- at $T > T_D$, melting of quarkonia

Matsui, Satz PLB178(1986)

Probing the Quark Gluon Plasma with quarkonia

Properties of quarkonia

- bound states of heavy quark Q and anti-quark \overline{Q}
- stable and tightly bound
- heavy quark pair produced via gluon fusion in high energy hadronic collisions
- $Q\overline{Q}$ produced in the initial hard partonic collisions ($\tau \approx 1/m_Q \approx 0.05-0.15$ fm/c)
- details of hadronization $Q\overline{Q} \rightarrow J/\psi$ not well understood

Quarkonium melting in QGP

- QGP = formed at high temperature and density, plasma of deconfined partons
- at T >> 0, high density of colour charge in the medium induces Debye screening
- at $T > T_D$, melting of quarkonia

Matsui, Satz PLB178(1986)

- r : quarkonium radius
- λ_D : Debye screening radius
- λ_D decreases with *T*

Probing the Quark Gluon Plasma

Sequential suppression in QGP

- since quarkonia have different radius and binding energy

 \rightarrow sequential suppression of quarkonium states

Karsch, Satz Z.Phys.C51 (1991) 209

Probing the Quark Gluon Plasma

Sequential suppression in QGP - since quarkonia have different radius and binding energy \rightarrow sequential suppression of quarkonium states Karsch, Satz Z.Phys.C51 (1991) 209

Regeneration in QGP

- total charm cross-section increases with energy
- c and \bar{c} combination in the QGP or at the phase boundary \rightarrow regeneration of J/ ψ

Matsui (1987) Braun-Munzinger, Stachel PLB490(2000)

Thews et al. PRC62(2000)

- no/small regeneration expected for bottomonia

$$\frac{N_{q\bar{q}}}{event} = \frac{\sigma_{q\bar{q}}^{pp}}{\sigma_{inel}^{pp}} \times N_{coll}$$

ALICE, JHEP 1207 (2012) 191

In most central collisions [0-10%]	RHIC 200 GeV	LHC 2.76 TeV
N _{cc} /event	13	115
N _{bb} /event	0.1	3

Energy Density

Probing the cold nuclear matter (CNM)

Initial state effects in heavy-ion collisions

- modification of the gluon distribution in the nucleon in a nuclear environment (nuclear shadowing, gluon saturation)
- gluon energy loss
- gluon multiple scattering

J/ψ?

Final state effects in heavy-ion collisions

- heavy quark pair energy loss (can be coherent with initial state energy loss)
- breakup of quarkonia by collisions with nucleons (nuclear absorption) but expected to be small at LHC since the quarkonium formation time is much larger than the crossing time of the colliding nuclei

Probing the cold nuclear matter (CNM)

Initial state effects in heavy-ion collisions

- modification of the gluon distribution in the nucleon in a nuclear environment (nuclear shadowing, gluon saturation)
- gluon energy loss
- gluon multiple scattering

Final state effects in heavy-ion collisions

- heavy quark pair energy loss (can be coherent with initial state energy loss)
- breakup of quarkonia by collisions with nucleons (nuclear absorption) but expected to be small at LHC since the quarkonium formation time is much larger than the crossing time of the colliding nuclei

Studying medium effects at LHC

- Pb-Pb collisions: QGP
- p-Pb collisions: CNM and reference for Pb-Pb
- pp collisions: reference for p-Pb and Pb-Pb

Quarkonium detection in ALICE

Quarkonium detection in ALICE

Quarkonium detection in ALICE

p-Pb measurements

Jan/Feb. 2013 data sample

- p ($E_p = 4 \text{ TeV}$) + Pb ($E_{Pb} = 1.58 \text{ A} \cdot \text{TeV}$) collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$: center of mass shifted in rapidity in the proton beam direction by $\Delta y = 0.465$
- 2 beam configurations (p-Pb and Pb-p): two rapidity ranges for the Muon Spectrometer

Muon Spectrometer in Pb-going side Backward rapidity: $-4.46 < y_{cms} < -2.96$ $x^*_{Pb} \approx 10^{-2} - 10^{-1}$

* Momentum fraction of probed gluons in nucleus assuming $2 \rightarrow 1 J/\psi / \Upsilon$ production mechanism

Muon Spectrometer in p-going side Forward rapidity: $2.03 < y_{cms} < 3.53$ $x^*_{Pb} \approx 10^{-5} - 10^{-4}$ Mid-rapidity: $-1.37 < y_{cms} < 0.43$ $x^*_{Pb} \approx 10^{-3}$

p-Pb measurements

counts per 40 MeV/*c*²

250

200

150

100

p-Pb \ s_{NN} = 5.02 TeV

 $L_{int} = 52 \,\mu b^{-1}$

 $p_{\tau} > 0 \text{ GeV}/c$

 $|y_{|ab}| < 0.9$

Triggers

- Minimum Bias (VZERO)
 - 99% efficiency for non single diffractive events
 - p-Pb: L_{int} (-1.37 < y_{cms} < 0.43) = 52 μ b⁻¹
- Opposite-sign dimuon (VZERO+MTR)
 - p-Pb: L_{int} (2.03 < y_{cms} < 3.53) = 5.0 nb⁻¹
 - Pb-p: L_{int} (-4.46 < y_{cms} < -2.96) = 5.8 nb⁻¹

Opposite Sign

Like Sign*1.31

Probing cold nuclear matter: observables

Nuclear modification factor *R*_{pPb}

$$R_{pPb} = \frac{Y_{J/\psi \to \mu\mu}}{\langle T_{pPb} \rangle \sigma_{J/\psi \to \mu\mu}^{pp}} \qquad Y_{J/\psi \to \mu\mu} = \frac{N_{J/\psi \to \mu\mu}}{N_{MB} A \epsilon}$$

No pp reference at $\sqrt{s} = 5.02$ TeV

 \rightarrow energy interpolation, rapidity and $p_{\rm T}$ interpolation/extrapolation

- \rightarrow strategy of interpolation analysis depending on the measurements
- \rightarrow systematics associated are important

Probing cold nuclear matter: observables

Nuclear modification factor *R*_{pPb}

$$R_{pPb} = \frac{Y_{J/\psi \to \mu\mu}}{\langle T_{pPb} \rangle \sigma_{J/\psi \to \mu\mu}^{pp}} \qquad Y_{J/\psi \to \mu\mu} = \frac{N_{J/\psi \to \mu\mu}}{N_{MB} A \epsilon}$$

No pp reference at $\sqrt{s} = 5.02$ TeV

 \rightarrow energy interpolation, rapidity and p_T interpolation/extrapolation \rightarrow strategy of interpolation analysis depending on the measurements \rightarrow systematics associated are important

Probing cold nuclear matter: observables

Nuclear modification factor *R*_{pPb}

$$R_{pPb} = \frac{Y_{J/\psi \to \mu\mu}}{\langle T_{pPb} \rangle \sigma_{J/\psi \to \mu\mu}^{pp}} \qquad Y_{J/\psi \to \mu\mu} = \frac{N_{J/\psi \to \mu\mu}}{N_{MB} A \epsilon}$$

No pp reference at $\sqrt{s} = 5.02$ TeV

 \rightarrow energy interpolation, rapidity and p_T interpolation/extrapolation \rightarrow strategy of interpolation analysis depending on the measurements \rightarrow systematics associated are important

Forward to Backward ratio

$$R_{FB}(|y_{cms}|) = \frac{R_{pPb}(y_{cms})}{R_{pPb}(-y_{cms})} = \frac{Y_{pPb}(y_{cms})}{Y_{pPb}(-y_{cms})}$$

pp reference cancels out

Rapidity range restricted to common range (2.96< $|y_{cms}|$ <3.53): loss of statistics Comparison to theory is less stringent than R_{pPb}

J/ ψ cross-sections vs y and p_T

Forward rapidity: lower cross-sections and harder in p_T than at backward rapidity

J/ ψ R_{FB} integrated and vs p_T

 R_{FB} decreases at low p_{T} down to 0.6 and is consistent with unity for $p_{\text{T}} > 10 \text{ GeV}/c$ B feed-down does not contribute much to this ratio *LHCb, JHEP 1402 (2014) 072*

Models:

- Shadowing model CEM + EPS09 NLO (Vogt, arXiv:1301.3395)
- Shadowing model CSM + EPS09/nDSG LO (Ferreiro et al., arXiv:1305.4569)
- Coherent energy loss (Arleo et al., arXiv:1212.0434) with pp data parametrization

Pure shadowing models tend to overestimate the data

Shadowing + energy loss model reproduces fairly well the data but with a steeper p_T dependence at low p_T

ALICE

* Momentum fraction of probed gluons in nucleus assuming $2\rightarrow 1 \text{ J/}\psi$ production mechanism

Models

- Shadowing model CEM + EPS09 NLO (Vogt, arXiv: 1301.3395)
- Shadowing model CSM + EPS09 LO (Ferreiro et al., arXiv:1304.4569)
- Coherent energy loss (Arleo et al., arXiv:1212.0434) with pp data parametrization
- Gluon saturation (Fuji et al., arXiv: 13042221): Color Glass Condensate framework with CEM LO with saturation scale $Q_{s,A}^2(x = 0.01) = 0.7-1.2 \text{ GeV/c}^2$

* Momentum fraction of probed gluons in nucleus assuming $2 \rightarrow 1 \text{ J/}\psi$ production mechanism

* Momentum fraction of probed gluons in nucleus assuming $2\rightarrow 1 \text{ J/}\psi$ production mechanism

Shadowing: backward rapidity data well reproduced, strong shadowing favoured at forward rapidity Coherent energy loss: y-dependence well reproduced, better agreement with pure energy loss CGC calculations underestimate the data

Systematic uncertainties boxes: uncorrelated shaded area: (partially) correlated

Backward rapidity

 $R_{\rm pPb}$ shows a small $p_{\rm T}$ dependence and is close to unity

Systematic uncertainties boxes: uncorrelated shaded area: (partially) correlated

Backward rapidity

 $R_{\rm pPb}$ shows a small $p_{\rm T}$ dependence and is close to unity

Mid rapidity

 $R_{\rm pPb}$ tends to increase with $p_{\rm T}$

Systematic uncertainties boxes: uncorrelated shaded area: (partially) correlated

Backward rapidity

 $R_{\rm pPb}$ shows a small $p_{\rm T}$ dependence and is close to unity

Mid rapidity

 $R_{\rm pPb}$ tends to increase with $p_{\rm T}$

Forward rapidity

 R_{pPb} increases with p_T and is compatible with unity for p_T larger than 5 GeV/c

Backward rapidity

 R_{pPb} shows a small p_T dependence and is close to unity Mid rapidity

 $R_{\rm pPb}$ tends to increase with $p_{\rm T}$

Forward rapidity

 R_{pPb} increases with p_T and is compatible with unity for p_T larger than 5 GeV/c

At forward rapidity data favours a strong shadowing

Coherent energy loss model overestimates the suppression at forward rapidity for $p_T < 2 \text{ GeV}/c$ CGC calculations underestimate the data in the full p_T range

Event multiplicity with forward detectors

$J/\psi p_T$ broadening vs event multiplicity

 $\Delta < p_T^2 > = < p_T^2 >_{pPb} - < p_T^2 >_{pp}$ for different event multiplicity measured with V0A $< p_T^2 >_{pp}$ from interpolated pp distributions at $\sqrt{s} = 5.02$ TeV

Systematic uncertainties boxes: uncorrelated box at unity: correlated

J/ ψp_T broadening vs event multiplicity

 $\Delta < p_T^2 > = < p_T^2 >_{pPb} - < p_T^2 >_{pp}$ for different event multiplicity measured with V0A $< p_T^2 >_{pp}$ from interpolated pp distributions at $\sqrt{s} = 5.02$ TeV

Systematic uncertainties boxes: uncorrelated box at unity: correlated

 $\Delta < p_T^2 >$ larger at forward rapidity $\Delta < p_T^2 >$ increases with event multiplicity but saturates at 20-40% V0A multiplicity

Ongoing: different event multiplicity estimators (Pixel, ZDC), relative yield or nuclear modification factor vs event multiplicity

$\psi(2S)$ measurements in p-Pb: [$\psi(2S)/J/\psi$]

$\psi(2S)$ measurements in p-Pb: [$\psi(2S)/J/\psi$]

 $[\psi(2S)/J/\psi]_{pPb}$ clearly suppressed as compared to pp @ $\sqrt{s} = 7$ TeV

$\psi(2S)$ measurements in p-Pb: [$\psi(2S)/J/\psi$]

 $[\psi(2S)/J/\psi]_{pPb}$ clearly suppressed as compared to pp @ $\sqrt{s} = 7$ TeV $\psi(2S)$ to J/ψ suppression also observed at RHIC at mid-rapidity

$\psi(2S)$ measurements in p-Pb: R_{pPb}

$$R_{pPb}^{\psi(2S)} = R_{pPb}^{J/\psi} \frac{\sigma_{pPb}^{\psi(2S)}}{\sigma_{pPb}^{J/\psi}} \frac{\sigma_{pp}^{J\psi}}{\sigma_{pp}^{\psi(2S)}}$$

Systematic uncertainties

boxes: uncorrelated shaded area: (partially) correlated box at unity: fully correlated

The stronger suppression of $\psi(2S)$ relatively to J/ ψ is not described by initial state CNM and coherent energy loss

 \rightarrow final state effect? Other mechanisms?

$\Upsilon(1S)$ measurements: R_{FB}

 R_{FB} is compatible with unity and larger than the J/ ψ $R_{\text{FB}} = 0.60\pm0.01(\text{stat})\pm0.06(\text{syst})$ Limited statistics does not allow to discriminate among models

$\Upsilon(1S)$ measurements: R_{pPb}

Systematic uncertainties

boxes: uncorrelated shaded area: (partially) correlated box at unity: fully correlated

 $\Upsilon(1S)$ seems more suppressed than predicted by shadowing (CEM+EPS09 NLO and CSM EPS09 LO shown here) or coherent energy loss models but in agreement within the large fully correlated uncertainty from pp cross-section energy interpolation

Extrapolating CNM effects to Pb-Pb measurements at $\sqrt{s_{NN}} = 2.76$ TeV

Cynthia Hadjidakis April 17th 2014

A reminder: J/ ψ R_{AA} vs event centrality

Forward rapidity: clear J/ ψ suppression with no centrality dependence for N_{part} > 100 Mid-rapidity: no significant dependence with centrality but large uncertainty Larger suppression at forward rapidity than mid-rapidity

Different centrality dependence of R_{AA} at LHC and RHIC energy

J/ ψ R_{AA} vs p_T for most central collisions

J/ ψ less suppressed at low p_T than high p_T Different p_T dependence of R_{AA} at LHC and RHIC

J/ ψ R_{AA} vs p_T for most central collisions

J/ ψ less suppressed at low p_T than high p_T Different p_T dependence of R_{AA} at LHC and RHIC

Model:

- Transport (Zhao et al.): suppression and regeneration, with or without shadowing
- \rightarrow Regeneration contribution important for $p_T < 3$ GeV/c and negligible at larger p_T

Hypothesis

- J/ ψ production mechanism (2 \rightarrow 1 kinematics) \Rightarrow similar x_g in Pb for p-Pb@ $\sqrt{s_{NN}}=5.02$ TeV and Pb-Pb@ $\sqrt{s_{NN}}=2.76$ TeV despite different energies and rapidity domains
- Factorization of shadowing effects in p-Pb and Pb-Pb $\Rightarrow R_{PbPb}^{Shad} = R_{pPb}(y \ge 0) \times R_{pPb}(y \le 0) \Rightarrow S_{J/\Psi} = R_{PbPb} / R_{PbPb}^{Shad}$

Note: R_{PbPb} is integrated over centrality and is compared to R_{PbPb} for different bins in centrality [0-40%] and [0-90%]

Hypothesis

- J/ ψ production mechanism (2 \rightarrow 1 kinematics) \Rightarrow similar x_g in Pb for p-Pb@ $\sqrt{s_{NN}}=5.02$ TeV and Pb-Pb@ $\sqrt{s_{NN}}=2.76$ TeV despite different energies and rapidity domains
- Factorization of shadowing effects in p-Pb and Pb-Pb $\Rightarrow R_{PbPb}^{Shad} = R_{pPb}(y \ge 0) \times R_{pPb}(y \le 0) \Rightarrow S_{J/\Psi} = R_{PbPb} / R_{PbPb}^{Shad}$

Note: R_{PbPb} is integrated over centrality and is compared to R_{PbPb} for different bins in centrality [0-40%] and [0-90%]

At $p_T > 7$ (4) GeV/*c* at mid (forward) rapidity, small effects from extrapolated shadowing At low p_T , less or same suppression in Pb-Pb than R_{PbPb}^{Shad} $\rightarrow R_{PbPb}$ enhanced if corrected by such shadowing effects

Hypothesis

- J/ ψ production mechanism (2 \rightarrow 1 kinematics) \Rightarrow similar x_g in Pb for p-Pb@ $\sqrt{s_{NN}}=5.02$ TeV and Pb-Pb@ $\sqrt{s_{NN}}=2.76$ TeV despite different energies and rapidity domains
- Factorization of shadowing effects in p-Pb and Pb-Pb $\Rightarrow R_{PbPb}^{Shad} = R_{pPb}(y \ge 0) \times R_{pPb}(y \le 0) \Rightarrow S_{J/\Psi} = R_{PbPb} / R_{PbPb}^{Shad}$

Note: R_{PbPb} is integrated over centrality and is compared to R_{PbPb} for different bins in centrality [0-40%] and [0-90%]

At $p_T > 7$ (4) GeV/*c* at mid (forward) rapidity, small effects from extrapolated shadowing At low p_T , less or same suppression in Pb-Pb than R_{PbPb}^{Shad} $\rightarrow R_{PbPb}$ enhanced if corrected by such shadowing effects

Conclusions

Quarkonium production is used as a probe of the cold nuclear matter effects in p-Pb and of the hot medium formed in heavy-ion collisions

First p-Pb measurements

- J/ψ measurements support a strong shadowing at forward rapidity and/or the coherent energy loss model
- $\psi(2S)$ suppressed relatively to J/ ψ by up to 45% at backward rapidity: final state effect? Other mechanism in p-Pb?
- $\Upsilon(1S)$ measurements show a similar suppression to the J/ ψ but large uncertainties (pp interpolation, limited statistics) do not allow to constrain models

Latest Pb-Pb measurements

- J/ψ : R_{AA} measurements show a different behaviour wrt lower energy measurements. Models including J/ψ production from deconfined charm quarks in the QGP phase reproduce well the R_{AA} .
- p-Pb measurements extrapolated to Pb-Pb supports a suppression from hot effect at large p_T and no suppression/an enhancement at low p_T

More measurements to come, stay tuned!

back-up slides

Hypothesis

2→1 kinematics of J/ ψ production Factorization of shadowing effects in p-Pb and Pb-Pb $\Rightarrow R_{PbPb}^{Shad} = R_{pPb}(x_1) \times R_{pPb}(x_2)$

Kinematics

 $p(x_1) + Pb(x_2) \rightarrow J/\psi(y, p_T)$ with $x_{1,2} = \sqrt{(m^2 + p_T^2)} / \sqrt{s_{NN}} \exp(\pm y_{cms})$

gluon x in nucleus	x_1	<i>X</i> 2
p-Pb @ 5.02 TeV and -4.46 <y<sub>cms<-2.96</y<sub>	1.2-5.3 10-2	-
p-Pb @ 5.02 TeV and 2.03 <ycms <3.53<="" td=""><td>-</td><td>1.9-8.3 10⁻⁵</td></ycms>	-	1.9-8.3 10 ⁻⁵
Pb-Pb @ 2.76 TeV and 2.5 <y<4< td=""><td>1.2-6.1 10-2</td><td>2.0-9.2 10-5</td></y<4<>	1.2-6.1 10-2	2.0-9.2 10-5
p-Pb @ 5.02 TeV and -1.37 <y<sub>cms <0.43</y<sub>	4.0 10-4-2.4 10-3	4.0 10-4-2.4 10-3
Pb-Pb @ 2.76 TeV and -0.8 <y<0.8< td=""><td>5.0 10-4-2.5 10-3</td><td>5.0 10-4-2.5 10-3</td></y<0.8<>	5.0 10-4-2.5 10-3	5.0 10-4-2.5 10-3

 \Rightarrow gluon momentum fraction x_1 , x_2 probed in nucleus similar in p-Pb @ 5.02 TeV and Pb-Pb @ 2.76 TeV

Cold nuclear matter contribution in Pb-Pb

$$R_{PbPb}(\sqrt{s_{NN}}=2.76 \text{ TeV}, y, p_{T}) = R_{pPb}(\sqrt{s_{NN}}=5.02 \text{ TeV}, y < 0, p_{T}) \times R_{pPb}(\sqrt{s_{NN}}=5.02 \text{ TeV}, y > 0, p_{T})$$

References

Pb-Pb measurements at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

- Centrality, rapidity and transverse momentum dependence of the J/ ψ suppression in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV arXiv:1311.0214
- J/ ψ Elliptic Flow in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys.Rev.Lett. 111(2013) 162301, arXiv:1303.5880
- J/ ψ suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV Phys.Rev.Lett. 109 (2012) 072301, arXiv:1202.1383
- p-Pb measurements at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - J/ Ψ production and nuclear effects in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, arXiv:1308.6726

pp measurements at $\sqrt{s} = 2.76$ and 7 TeV

- Rapidity and transverse momentum dependence of inclusive J/ ψ production in pp collisions at $\sqrt{s} = 7$ TeV, Phys.Lett.B 704 (2011) 442, arXiv:1105.0380
- Inclusive J/ ψ production in pp collisions at $\sqrt{s} = 2.76$ TeV, Phys.Lett.B 718 (2012) 295, arXiv:1203.3641
- J/ ψ production as a function of Charged Particle Multiplicity in pp collisions at $\sqrt{s} = 7$ TeV, Phys.Lett.B 712 (2012) 165, arXiv:1202.2816
- J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV, Phys.Rev.Lett. 108 (2012) 082001, arXiv:1111.1630
- Measurement of prompt J/ψ and beauty hadron production cross-sections at mid-rapidity in pp collisions, JHEP 11 (2012) 065, arXiv:1205.5880

$J/\psi v_2 v_5 p_T$

$$v_2(p_{\mathrm{T}}) = \langle cos2(\phi - \Psi) \rangle(p_{\mathrm{T}})$$

Models:

- Transport (Zhao et al./ Liu et al.) models: suppression and J/ψ from regeneration, different $\sigma_{c\bar{c}}$ and/or shadowing hypothesis

Non-zero J/ ψ v₂ observed at intermediate p_T for semi-central collisions

 v_2 complements R_{AA} : both are qualitatively well described by transport models including regeneration

pp cross-section interpolation at 5.02 TeV

J/ψ cross-section

Forward rapidity:

Energy interpolation of p_T and y-dep. with ALICE forward rapidity data @ 2.76 and 7 TeV

Rapidity extrapolation due to rapidity shift (0.5) in p-Pb

CEM and FONLL calculations used to validate the empirical functions used

ALICE + LHCb, public note in preparation

Mid-rapidity:

Energy interpolation at mid-rapidity with PHENIX @ 200 GeV, CDF @ 1.96 TeV, ALICE @ 2.76 and 7 TeV $< p_T >$ interpolation and p_T extrapolation with both forward and mid-rapidity data from PHENIX @ 200 GeV, CDF @ 1.96 TeV, ALICE @ 2.76 and 7 TeV, CMS @ 7 TeV, LHCb @ 2.76, 7 and 8 TeV

F. Bossù et al., arXiv:1103.2394

$[\psi(2S)/J/\psi]$ ratio No energy and rapidity dependence of $[\psi(2S)/J/\psi]$ in pp assumed. Systematics		Systematics
evaluated with CDF @ 1.96 TeV and LHCb @ 7 TeV	J/ψ (y>0)	6-17%
Y(1S) cross-section Energy interpolation with mid-rapidity data from CDF @ 1.8 TeV, D0 @ 1.96 TeV, CMS @ 2.76 and 7 TeV Rapidity extrapolation: Pythia tunings selected with rapidity dependence of CMS and LHCb @ 7 TeV	J/ψ (y~0)	16-27%
	[ψ(2S)/J/ψ] (y>0)	4 %
	Υ(1S)	13-19%

$J/\psi R_{AA}$ vs centrality

Models:

- Statistical model (Andronic et al.): thermal model, all J/ψ formed at hadronization, different σ_{cc} hypothesis
- Transport (Zhao et al./ Liu et al.) and comovers+recombination (Ferreiro) models: suppression and more than 50% of J/ ψ from regeneration for most central events, different σ_{cc} and/or shadowing hypothesis

These models include regeneration mechanism and describe well the data for semi-central and central collisions

$J\!/\psi\;R_{AA}\;vs\;y$

Suppression more important at forward rapidity

Shadowing models do not account for this rapidity decrease of RAA

$\psi(2S)$: comparison to PHENIX

Inclusive J/ ψ in p-Pb: comparison to LHCb

Comparison to PHENIX

* Momentum fraction of probed gluons in nucleus assuming $2 \rightarrow 1 \text{ J/}\psi$ production mechanism

Comparison to PHENIX

* Momentum fraction of probed gluons in nucleus assuming $2\rightarrow 1 \text{ J/}\psi$ production mechanism

Caution: EPS09 NLO shadowing not exactly same production models at RHIC and LHC

