

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Overview of experimental results of heavy-flavour and quarkonia vn in small systems

Andrea Dubla

- Test pQCD calculations
- Study hadronization mechanism
- Set a reference for p-Pb and Pb-Pb

- kT-broadening, energy loss in CNM in the initial and final state
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-A collisions.

A-A collisions

- Heavy-quark energy loss
- Quarkonium dissociation/regeneration

- Study cold nuclear matter (CNM) effects like nPDF, shadowing, gluon saturation,

- Test pQCD calculations
- Study hadronization mechanism
- Set a reference for p-Pb and Pb-Pb

- kT-broadening, energy loss in CNM in the initial and final state
- formation of a QGP in p-A collisions.

\Rightarrow A-A collisions

- Heavy-quark energy loss
- Quarkonium dissociation/regeneration

- Study cold nuclear matter (CNM) effects like nPDF, shadowing, gluon saturation, - Address possible collective effects and effects related to the (possible)

- Test pQCD calculations
- Study hadronization mechanism
- Set a reference for p-Pb and Pb-Pb

- kT-broadening, energy loss in CNM in the initial and final state
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-A collisions.

\Rightarrow A-A collisions

- Heavy-quark energy loss
- Quarkonium dissociation/regeneration

- Study cold nuclear matter (CNM) effects like nPDF, shadowing, gluon saturation,

Heavy-flavour production in p-Pb collisions

Described by models including cold nuclear-matter effects

- data disfavour suppression >~15% at high p_T
- need to improve the precision of the measurement
- need to look at complementary observables

A. Dubla

A. Dubla

GSI

Data agree with nPDF and CGC - to notice that experimental precision starts to be better than theoretical one

EPS09LO Eur. Phys. J. C77 (2017) 1, arXiv:1610.05382 EPS09NLO Comput. Phys. Commun. 184 (2013) 2562 nCTEQ15 Comput. Phys. Commun. 198 (2016) 238, CGC Phys. Rev. D91 (2015) 114005,

4

Beauty production in p-Pb collisions at LHC

Beauty production consistent with unity

Quarkonia production in p-Pb collisions at LHC

⇒ Y(1S): 30-40% suppression at low p_T
 Need to be taken into account when interpreting results in Pb-Pb collisions

Nothing unexpected!

\Rightarrow Production of heavy-flavour in p-A collision follows the **expected pattern**:

- no suppression due to final state effects observed with present precision - results consistent with calculations including modification of nPDF (shadowing)

- Test pQCD calculations
- Study hadronization mechanism
- Set a reference for p-Pb and Pb-Pb

- kT-broadening, energy loss in CNM in the initial and final state
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-A collisions.

\Rightarrow A-A collisions

- Heavy-quark energy loss
- Quarkonium dissociation/regeneration

Outline

- Study cold nuclear matter (CNM) effects like nPDF, shadowing, gluon saturation,

What about collectivity in p-Pb collisions

pp collisions

⇒ LHC data opened a new hera: detailed study of high-multiplicity events (both in pp and p-A) becomes possible

 \Rightarrow In 2010 CMS Collaboration publish a paper presenting the observation of a double-ridge structure (di-hadron correlation) in high-multiplicity pp events

pp collisions

A. Dubla

⇒ LHC data opened a new hera: detailed study of high-multiplicity events (both in pp and p-A) becomes possible

 \Rightarrow In 2010 CMS Collaboration publish a paper presenting the observation of a double-ridge structure (di-hadron correlation)

pp collisions

(CMS Collaboration) JHEP 09, (2010) 091

(d) CMS N \ge 110, 1.0GeV/c<p_<3.0GeV/c

events (both in pp and p-A) becomes possible

1 < p_T < 3 GeV/c

GSI

pp collisions

GSI

D meson production vs centrality

 $Q_{\rm pPb}^{\rm 0-10\%}(p_{\rm T}) = \frac{p_{\rm Pb}}{\langle T_{\rm AA} \rangle_{\rm 0-10\%}} \times d\sigma_{\rm pp} / dp_{\rm T}$

- Hint for D-meson "Central-to-peripheral" ratio (QCP) larger than unity - 1.5σ in $3 < p_T < 8$ GeV/c

A. Dubla

D meson production vs centrality

 $Q_{\rm pPb}^{\rm 0-10\%}(p_{\rm T})$ = $\langle T_{AA} \rangle_{0-10\%} \times d\sigma_{pp} / dp_{T}$

A. Dubla

- Hint for D-meson "Central-to-peripheral" ratio (Q_{CP}) larger than unity - 1.5σ in $3 < p_T < 8$ GeV/c

- Very similar to charged particle (pion dominated) - Initial-state effect? Mass effect? Radial flow? ... need comparison with theoretical calculations 11

Heavy-flavour collectivity in p-Pb collisions??

 \Rightarrow Non-zero elliptic flow (v_2) as a measure of collectivity

inclusive muons at forward rapidity ($p_T > 2 \text{ GeV}/c$)

- High- p_T inclusive muons are HF dominated.

Need direct proof (Prompt D mesons, heavy-flavour) hadron decay leptons)

Heavy-flavour electrons v₂ in p-Pb collisions

→ Two-particle correlations of HFe with charged particles in high multiplicity and low multiplicity events

→ Near and away side modification from low multiplicity to high multiplicity

Heavy-flavour electrons v₂ in p-Pb collisions

- ⇒ Jet subtraction: high mult. low mult.
- Modulation present! Collective effects
 Initial- or final-state effect

A. Dubla

Heavy-flavour electrons v₂ in p-Pb collisions

- ⇒ Jet subtraction: high mult. low mult.
- Modulation present! Collective effects
 Initial- or final-state effect

A. Dubla

 \Rightarrow Significance: 5.1 σ for 1.5< p_{Te} < 4 GeV/c

Effect is similar to the one observed for inclusive muons

µ-hadron correlation in p-Pb collisions

⇒ Similar two particle correlation technique (µ-h) used in ATLAS to investigate flow-like effect for high pt muons in high multiplicity p-Pb at 8.16 TeV

u-hadron correlation in p-Pb collisions

u-hadron correlation in p-Pb collisions

D-hadron correlation in p-Pb collisions

ATLAS-CONF-2017-073

A. Dubla

D^o elliptic flow in p-Pb collisions

- kinetic energy per constituent quark, after normalizing v_2 by the number of constituent quarks.
- of the light-flavor quarks. This effect is not seen in Pb-Pb collisions.

A. Dubla

 \Rightarrow Comparing to strange-hadron results, the **D**⁰ v₂ values are positive but smaller at a given p_{T} , or at similar transverse

This indicates that in high-multiplicity p-Pb collisions, the collective behaviour of charm quarks is weaker than that

J/w v₂ in p-Pb₂ collisions

- \Rightarrow Significant J/ ψ v₂ observed
- dynamics than light quarks in small systems

Consistent with the previous conclusion that charm quarks develop a weaker collective

6 ⇒ Caveat: different rapidity ranges for different particle species could (dias) the comparison

J/w v₂ in p-Pb collisions

A. Dubla

\Rightarrow Significant J/ ψ v₂ observed for $p_T > 3 \text{ GeV/c}$

- \Rightarrow The measured values, albeit with large uncertainties, are comparable with those measured in Pb-Pb collisions at 5.02 TeV in forward rapidity
- \Rightarrow The underlying mechanism is not understood - comparable magnitude of the J/ ψ v₂ in p-Pb and Pb-Pb indicates that the same mechanism could be at play

What about the future?

HL-LHC projections for p-Pb collisions

- ⇒ **D-Dbar correlation** -> a window to the CGC

A. Dubla

 \Rightarrow The projected precision with p-Pb integrated luminosities Lint ~2 pb⁻¹ (ATLAS and CMS) and ~1 pb⁻¹ (ALICE) has the potential to shed light on the different mechanisms behind the observed anisotropy

- no suppression observed at the RpPb level -> no final state effect?

A. Dubla

Conclusion

- no suppression observed at the RpPb level -> no final state effect?

A. Dubla

- no suppression observed at the QpPb/QCP level in most central pPb collision -> no final state effect?

Conclusion

- no suppression observed at the RpPb level -> no final state effect?

A. Dubla

GSI
Conclusion

\Rightarrow Current understanding is still puzzling:

- no suppression observed at the RpPb level -> no final state effect?

A. Dubla

GSI

One observable as example....

 \Rightarrow J/ ψ production increases faster-than linear with the charged multiplicity (N_{ch}). This could tie in with hints of a QGP-like behaviour in high-multiplicity pp events

A. Dubla

S. Weber, A. Dubla, A. Andronic, A. Morsch Eur. Phys. J. C (2019) 79 no.1, 36.

One observable as example....

 \Rightarrow J/ ψ production increases faster-than linear with the charged multiplicity (N_{ch}). This could tie in with hints of a QGP-like behaviour in high-multiplicity pp events

A. Dubla

S. Weber, A. Dubla, A. Andronic, A. Morsch Eur. Phys. J. C (2019) 79 no.1, 36.

- Ferreiro: Overlapping strings Phys.Rev. C86 (2012) 034903
- Kopeliovich: Draw analogy between high multiplicity pp an pA collisions Phys. Rev. D 88, 116002 (2013)
- **EPOS3**: Hydrodynamic expansion reduces particle multiplicity arXiv:1602.03414
- CGC model: combine CGC description of incoming protons with NRQCD framework for J/ψ production Phys. Rev. D 98, 074025 (2018)

One observable as example....

 \Rightarrow J/ ψ production increases faster-than linear with the charged multiplicity (N_{ch}). This could tie in with hints of a QGP-like behaviour in high-multiplicity pp events

A. Dubla

S. Weber, A. Dubla, A. Andronic, A. Morsch Eur. Phys. J. C (2019) 79 no.1, 36.

- Ferreiro: Overlapping strings Phys.Rev. C86 (2012) 034903
- Kopeliovich: Draw analogy between high multiplicity pp an pA collisions Phys. Rev. D 88, 116002 (2013)
- **EPOS3**: Hydrodynamic expansion reduces particle multiplicity arXiv:1602.03414
- CGC model: combine CGC description of incoming protons with NRQCD framework for J/ψ production Phys. Rev. D 98, 074025 (2018)

\Rightarrow The charged-particle multiplicity and the J/ ψ yield are not independent quantities

- 1) J/ ψ decay daughters. Two additional charged particles are produced in events containing a J/ ψ
- transition to the physical J/ψ state
- antiquark and charm quark, which in turn will produce additional particles
- 4) non-prompt J/ ψ (same for other open heavy-flavours):
 - **b** \rightarrow **B** \rightarrow **J**/ ψ + **X**: decay daughters X located close to J/ ψ flight direction in rapidity and azimuthal angle
 - beauty quark accompanied by **final state radiation**: enhancing the multiplicity in the region around it
 - gg \rightarrow bb: The **recoil jet** is at an **azimuthal angle of 180 degrees** with respect to the initial b quark, but can be at a different rapidity

A. Dubla

Auto-correlation effects

2) In NRQCD processes the J/ ψ is typically produced together with a gluon, e.g. via $gg \rightarrow [QQ]g$ which will hadronize and increase the multiplicity. Additionally, if the pre-resonant state is a colour-octet, an additional gluon is emitted in the

3) In the case of J/ψ from cluster collapse, the charm quark and antiquark are both produced together with another charm

Auto-correlation effects

⇒ toward region, same rapidity: additional decay daughters

⇒ away region: backward jet

 \Rightarrow Investigate J/ ψ production as function of multiplicity in different azimuthal regions w.r.t. J/ ψ flight direction, with or without rapidity gap between J/ ψ production ψ and multiplicity

Expectations for experiments

A. Dubla

- → Weaker-than-linear increase of direct J/ψ in the Transverse and Away region, while a linear increase in the **Towards region**
- \Rightarrow Non-prompt J/ ψ exhibit a strongerthan-linear increase due to recoils jet in Towards and Away region and an almost linear in the Transverse one (gluon emission)

Expectations for experiments

A. Dubla

- ⇒ Weaker-than-linear increase of direct J/ψ in the Transverse and Away region, while a linear increase in the **Towards region**
- \Rightarrow Non-prompt J/ ψ exhibit a strongerthan-linear increase due to recoils jet in Towards and Away region and an almost linear in the Transverse one (gluon emission)
- → Transverse momentum dependence only present as function of N_{ch} in toward and away region, absent for N_{ch} in UE region

Expectations for experiments

 \Rightarrow non-linearity rises with the p_{T} of the hadron for the multiplicity integrated case

 \Rightarrow Transverse region: closer to linear and the p_T dependence is fully removed

Concusion

- \Rightarrow Stronger-than-linear increase of J/ ψ production probability with charged-particle multiplicity and p_{T} dependence qualitatively reproduced with PYTHIA8
- \Rightarrow **Investigation of in different azimuthal regions** (with, without rapidity gap) allows to disentangle effects from underlying event or jet fragmentation/auto-correlation
- \Rightarrow Suggestion to experiments to perform the self-nomalized yield in different azimuthal regions

- \Rightarrow Caveat: No quantitative agreement with data!
- \Rightarrow Direct J/ ψ production not perfectly described by leading order NRQCD in PYTHIA - CMS/LHCb measurement of J/ ψ production in jets: J/ψ less isolated than expected
 - https://cds.cern.ch/record/2318344/files/HIN-18-012-pas.pdf
 - Phys. Rev. Lett.118, 192001 (2017)

Simply checking in PYTHA...

 \Rightarrow Technicalities:

- PYTHIA8.230, Monash 2013 tune
- non-diffractive events
- J/ ψ production forced to decay in dielectron channel

A. Dubla

- qualitatively by PYTHIA8
 - Effect more pronounced for higher p_T reproduced

- Will investigate in the following the influence of:
 - Multi-parton interactions (MPI)
 - Colour reconnection (CR)
 - Auto-correlation effects

QGP in small system?

A. Dubla

S. Weber, A. Dubla, A. Andronic, A. Morsch arXiv:1811.07744 [nucl-th], accepted EPJC

 \Rightarrow J/ ψ production increases faster-than-linear with the charged multiplicity (*N*_{ch}). This could tie in with hints of a QGP-like behaviour in high-multiplicity pp events

- \Rightarrow Studied how J/ ψ production rates are associated with the N_{ch} in PYTHIA
 - Stronger-than-linear increases due to autocorrelation effects
 - Weaker-than-linear increase of J/ψ production with N_{ch} in the Underlying Event region

Ac production at LHC

Ac/D^o ratio similar to the baryon-to-meson ratio observed in the light sector. Significantly larger than expectation from MC PYTHIA8. — Something not understood in charm fragmentation?

51

Quarkonia production in p-A collisions at RHIC

⇒ p/³He-going: about 10-20% suppression with Au nuclei. Consistent with shadowing expectation \Rightarrow Au/Al-going: indication of suppression in p-Au collisions?

52

D meson production in p-Pb collisions

Production cross-sections measured in a large rapidity interval and down to ~0 pT General agreement with pQCD calculations including nuclear modifications of PDF

- ⇒ Data agree with nPDF and CGC but experimental precision starts to be better than theoretical one

 \Rightarrow At high p_T , R_{AA} decreases towards central collisions - CNM & regeneration effects small \rightarrow energy loss picture? - R_{AA} RHIC >~ R_{AA} LHC/2.76TeV >~ R_{AA} LHC/5.02TeV

High pt J/w: RHIC vs LHC

Comparison with theoretical model

Experiment start putting strong constraints on theoretical calculations! - need of radiative energy loss to describe the high p_T region (most of the case) - Hints at low p_T that collisional energy loss is non negligible - Shadowing improve description of the data at low pT

Heavy-flavour hadron decay electron nuclear modification factor

arXiv:1805.04379

⇒ Data are better described when the nuclear PDFs (EPS09) are included in the model calculation \Rightarrow Suppression at intermediate/high p_{T} is better described by models that include both radiative and

collisional energy loss processes

A. Dubla

 $\Rightarrow R_{pPb}$ consistent with unity \rightarrow Large suppression at high p_T in Pb-Pb collisions is due to final-state effect due to heavy-quark in-medium energy loss

- POWLANG: Eur.Phys.J. C73 (2013) 2481 – TAMU: Phys.Lett. B735 (2014) 445–450; - MC@HQ+ÉPOS: PRC 89 (2014) 014905;

D meson production vs centrality

... need comparison with theoretical calculations

Heavy-flavour elliptic flow in p-Pb collisions

Jet subtraction: high mult. - low mult.

Modulation present! Collective effects Initial- or final-state effect

A. Dubla

Significance: 5.1σ for 1.5< p_{Te}< 4 GeV/c</p>

Effect is qualitatively similar to the one observed for light flavours and inclusive muons

Heavy-flavour hadron decay electron nuclear modification factor

- New R_{AA} measurements in Pb-Pb collisions at 5.02 TeV down to $p_T = 0.5$ GeV/c
- electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_{T} in Pb-Pb collisions ⇒ final-state effect due to heavy-quark in-medium energy loss

A. Dubla

- R_{pPb} consistent with unity (PLB 754 (2016) 81) \rightarrow no strong modification of heavy-flavour decay

- Mattia Faggin (HD/Padova) - A.D. (HD/GSI) 59

Quarkonia production in pp collisions

- CGC: addition of Sudakov summation can describe the $\Upsilon(1S)$ production at low p_T ٠
- J/ψ production is accompanied by other hadrons
 - PYTHIA disagrees with data

A. Dubla

Heavy-flavour elliptic flow in p-Pb collisions

- Two-particle correlations of HFe with charged particles in high multiplicity and low multiplicity events

 Near and away side modification from low multiplicity to high multiplicity

– Analysis based on the electron impact parameter distribution

- First R_{AA} measurement of beauty-decay electrons in 0-20% centrality at 2.76 TeV - New R_{AA} measurement of beauty-decay electrons in 0-10% centrality at 5.02 TeV $\Rightarrow R_{AA} < 1$ for $p_T > 3$ GeV/c and compatible with the R_{AA} measured at 2.76 TeV

A. Dubla

JHEP 07 (2017) 052

Nuclear modification factor in Xe-Xe collisions at 5.44 TeV

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta >$

- Comparison of **Pb-Pb** and **Xe-Xe** collisions at different N_{part} or N_{ch} may add sensitivity to probe the path-length dependence of energy loss \Rightarrow both radiative and collisional processes relevant for heavy-flavour \Rightarrow constraints to model calculations

A. Dubla

Test of path-length dependence

The scaling holds better for - Similar average event multiplicity: $T_{Xe} \approx T_{Pb}$ - High initial parton p_T : $\Delta E/E$ is small - Central collisions: L_{Xe} / L_{Pb} ~ (A_{Xe} / A_{Pb})^{b/3}

Nuclear modification factor

- Production of hard probes (heavy quarks, jets...) in AA collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (**binary scaling**)
- **Observable**: nuclear modification factor

$$R_{AA}(p_{T}, y) = \frac{1}{\langle T_{AA} \rangle} \cdot \frac{d^2 N_{AA}/dp_{T} dy}{d^2 \sigma_{pp}/dp_{T} dy}$$

- If no nuclear effects are present $\rightarrow R_{AA} = 1$
- Cold Nuclear Matter effects: \Rightarrow shadowing leads to a reduction of the heavy-flavour yield (important at low p_{T})
- In-medium parton energy loss via radiative (gluon emission) and collisional processes depending on: ⇒ colour charge
 - ⇒ quark mass (dead cone effect)
 - ⇒ path length and medium density

Dokshitzer and Kharzeev, PLB 519 (2001) 199 Wicks, Gyulassy, J.Phys. G35 (2008) 054001

Collectivity: azimuthal anisotropy

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
- In addition, path-length dependent energy loss induces an asymmetry in momentum space
- Observable: elliptic flow $v_2 = 2^{nd}$ Fourier coefficient of the particle azimuthal distribution

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

Heavy-flavour v_2 measurements probe:

- Low/intermediate p_{T} : collective motion, degree of thermalization of heavy quarks and hadronization mechanism (recombination) - High p_{T} : path-length dependence of heavy-quark energy loss

$p_{T,ee}$ and DCA_{ee} analyses in pp at $\sqrt{s} = 7$ TeV

 \Rightarrow Let the normalization of the charm and beauty contributions free in the cocktail Fit $m_{ee}/p_{T,ee}$ and DCA_{ee} spectra independently to extract the total charm and beauty cross sections \rightarrow

Model dependence

Sensitivity to the different implementation of heavy-quark production mechanisms

A. Dubla

PYTHIA 6 Perugia (qm) 0.8 DCA_{ee} fit (χ^2 /ndf = 2.216) 2011 tune (LO with ALICE $m_{\rm ee} / p_{\rm T.ee}$ fit (χ^2 /ndf = 0.989) σ_{bb} parton shower) pp √s = 7 TeV 0.7 Fit with POWHEG syst. uncertainty $Q\overline{Q} \rightarrow e^+e^$ stat. uncertainty 0.6 arXiv:1805.04391 Reference: —— σ_{bh} *Eur. Phys. J. C* 71 2011 0.5 σ_{cc} *Eur. Phys. J. C* 77 2017 0.4 0.3 **POWHEG (NLO)** 0.2 **+ PYTHIA 6** 0.1 parton shower 16 18 8 10 14

Heavy-flavour production in pp at $\sqrt{s} = 13$ TeV

*p*_{T,ee} **spectrum** in the intermediate-mass region

First measurement of $d\sigma_{c\bar{c}/b\bar{b}}/dy_{ly=0}$ in pp collisions at $\sqrt{s} = 13$ TeV

	PYTHIA 6 Perugia 2011 tune (LO with parton shower)	POWHEG (NLO) + PYTHIA 6 parton sho
$d\sigma_{c\overline{c}}/dy _{y=0}$	974 ± 138 (stat.) ± 140 (syst.) µb	1417 ± 184 (stat.) ± 204 (sys
$\mathrm{d}\sigma_{\mathrm{b}\overline{\mathrm{b}}}/\mathrm{d}y _{y=0}$	79 ± 14 (stat.) ± 11 (syst.) μb	48 ± 14 (stat.) ± 7 (sys

 \Rightarrow Fit 2D $p_{T,ee}$ and m_{ee} spectra to extract $d\sigma_{cc/bb}/dy_{ly=0}$ \Rightarrow Similar **model dependence** observed as at $\sqrt{s} = 7$ TeV \Rightarrow Further studies of charm production mechanisms

Nuclear modification factor in Xe-Xe: rapidity dependence

ALI-PREL-148699

– Also in this collision system a similar suppression is observed with the **muons** from heavy-flavour hadron decay at forward rapidity – Hint of a smaller suppression in 0-10% with respect to 20-40% centrality

- New R_{AA} measured down to $p_T = 0.2$ GeV/c thanks to the low B field used in ALICE during the Xe-Xe data taking!

Studies of heavy-flavour production as a function of multiplicity

– Heavy-flavour production in pp collisions provides insight into their production mechanisms and into the interplay between hard and soft processes in particle production

> – The self-normalized yield shows a faster than linear increase trend and are comparable with J/ψ measurements and PYTHIA8.2 predictions

Production in p-Pb collisions

- For both inclusive HF and beauty decay electron an $R_pPb = 1$ has been measured within the uncertainties No indication of significant cold nuclear matter effects on charm and beauty production - Large uncertainties do not allow to discriminate among models implementing different CNM effects

Heavy-flavour hadron decay electron nuclear modification factor

ALI-PUB-159941

New R_{AA} measurements in Pb-Pb collisions at 2.76 TeV down to $p_T = 0.5$ GeV/c \Rightarrow low- p_T measurements crucial in all systems to test binary scaling of total charm cross section and possible effect of initial-state effects like nuclear PDF (**shadowing**) \Rightarrow systematic uncertainty largely reduced thanks to the new pp reference at 2.76 TeV

A. Dubla

Leptons from heavy-flavour hadron decays

HF-decay muons 2.5 < y < 4 PLB 753, (2016) 41

- Similar v_2 of heavy-flavour decay electrons at mid-rapidity and muons at forward rapidity classes. - Positive v_2 observed \rightarrow 5.9 σ effect for 2 < p_T < 2.5 GeV/c in 20-40% centrality class for the heavy-flavour decay electrons. - Hint for an increase of v_2 from central to semi-central collisions as observed for D mesons - Suggests collective motion of low- p_{T} charm quarks in the expanding fireball

Nuclear modification factor in Xe-Xe collisions at 5.44 TeV

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta >$

 Scenario consistent with the quadratic path length dependence of mediuminduced radiative energy loss $\langle \Delta E \rangle \propto \varepsilon \cdot L^2$

– Pb-Pb and Xe-Xe systems give excellent control over the path length \rightarrow stringent constraints to all model calculations.

A. Dubla

A. Dubla

Where we are

pp collisions

→ Production cross section described by pQCD calculations

Pb-Pb and Xe-Xe collisions

- \Rightarrow Substantial modification of D and B meson p_{T} spectra ✓ Potential to constrain energy loss mechanisms and medium transport coefficients \Rightarrow Indication for $R_{AA}^{beauty} > R_{AA}^{charm}$ Consistent with the predicted quark-mass dependent energy loss
- Suggests that charm quarks take part in the collective expansion of the medium ⇒ Very promising sensitivity to the effect of the early time magnetic field in heavy-ion collisions

p-Pb collisions

- \Rightarrow Original motivation: a control experiment \checkmark Confirm that D and B meson suppression in Pb-Pb at high p_{T} is a final-state effect ✓ Small cold nuclear matter effects at mid-rapidity
 - observed in Pb-Pb collisions

✓ HF are a calibrated probe of the medium created in heavy-ion collisions

and what next

Pb-Pb: larger samples at higher energy

- \Rightarrow Improved precision + extended p_T coverage Quantitatively constrain energy loss models ✓ Total charm cross-section measurement Study whether beauty quarks thermalize in the medium ✓ Study of the magnetic field created in heavy-ion collisions

p-Pb and pp collisions

- Crucial role in the interpretation of Pb-Pb results
- → Production vs. multiplicity
- \Rightarrow Additional studies on collectivity in high multiplicity pp and p-Pb collisions

Major step towards high-precision measurements in the HF sector with the detector upgrades after Run2

