# Event-by-event hydrodynamics

### F.Grassi<sup>1</sup>

#### <sup>1</sup>Instituto de Física, Universidade de São Paulo, Brazil

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

### Outline

- I. Introduction
- II.  $p_{\perp}$  spectra
- III. Elliptic flow v<sub>2</sub>
- IV. Higher flow harmonics  $v_n$ 's
- V. Two-particle correlations in  $\Delta\eta \Delta\phi$

VI. Conclusion

# I. Introduction

What is event-by-event hydrodynamics?



# I. Introduction

### What is event-by-event hydrodynamics?



# I. Introduction

### What is event-by-event hydrodynamics?



### ⊳ **3+1**

- SPheRIO group: NeXus initial conditions+ ideal hydro since 2001
- H.Petersen et al.: UrQMD initial conditions+ ideal hydro since 2007
- K.Werner et al.: EPOS initial conditions+ ideal hydro since 2010
- B.Schenke et al.:

MC Glauber & half gaussians w/plateau + **viscous** hydro since 2010

⊳ **2+1** 

Holopainen et al.: MC Glauber since 2010
Qiu & Heinz': MC Glauber or fKLN since 2010
Staig & Shuryak: ~ analytical since 2010

### WHAT DO WE EXPECT?



# Hot spots expand more violently and $\sim$ isotropically

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

### II. $p_{\perp}$ spectra

#### Hardening due to stronger radial flow/hot spots



R.Andrade, FG, Y.Hama, T.Kodama, W.L.Qian PRL101(2008)112301

Effect increases for more peripheral collisions (diluted matter)

### Confirmed in more detail by later studies Note: effect is stronger for smaller granularity (but $t_{start}(\sigma) \searrow$ )



(日)

H.Holopainen et al. PRC83(2011)034901, Z.Qiu & U.Heinz PRC84(2011)024911, H.Petersen et al. JPG38(2011)045102.

# III. Elliptic flow v<sub>2</sub>



 $b \neq 0: v_2$  dominated by geometry (standard picture), decreases if there are hot spots (cf. isotropic expansion)  $b = 0: v_2$  is zero for smooth initial conditions and  $\neq 0$  if there are hot spots.



R.Andrade, FG, Y.Hama, T.Kodama, W.L.Qian PRL101(2008)112301

### Confirmed in more detail by later studies Note: effect is stronger for larger granularity



B. Schenke et al. PRL106(2011)042301, H.Holopainen et al. PRC83(2011)034901, H.Petersen et al. JPG38(2011)045102.

# IV. Higher flow harmonics $v_n$ 's

Angular particle distribution

$$\frac{dN}{d\phi} = \frac{N}{2\pi} [1 + \sum_{n=1}^{\infty} 2 v_n \cos(\phi - \psi_n)]$$

▷ For smooth initial conditions (of idential nuclei):  $v_{n odd} = 0$ ▷ For fluctuating initial conditions: all  $v_n \neq 0$ , due to the overall geometry of the interacting region or to the presence of tubes.



▲□▶▲□▶▲目▶▲目▶ 目 のへで

#### *v*<sub>n</sub>'s sensitive to $\eta$ /s (particularly for large *n*)



B. Schenke et al.. arXiv:1109.6289

This permits to pinpoint  $\eta/s$ 

(日)

э

#### *v*<sub>n</sub>'s sensitive to $\eta$ /s (particularly for large *n*)



B. Schenke et al.. arXiv:1109.6289

This permits to pinpoint  $\eta/s$ ?

(日)

э

### $v_n$ 's expected to be sensitive on granularity (cf. isotropic expansion)



F.Gardim, FG, M.Luzum, J.-Y.Ollitrault in progress

▷ Ideal hydro with NeXus initial conditions gives also a good description of the  $v_n(p_\perp)$ 's. ▷ Both viscosity and granularity must be taken into account for the  $v_n(p_\perp)$ 's.

### V. Two-particle correlations in $\Delta \eta - \Delta \phi$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observation of structures elongated along the collision axis (at RHIC and LHC)



#### Reproduced by hydro with tubular initial conditions





J.Takahashi, B.Tavares, W.-L.Qian, F.Grassi, Y.Hama, T.Kodama, N.Xu PRL103(2009)242301

#### Similar results from EPOS



K.Werner Iu. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov PRC82(2010)044904

### HOW TO OBTAIN BOTH NEAR AND AWAY-SIDE RIDGES?

### 1)Tube-based



R.Andrade, F.Grassi, Y.Hama, W.-L.Qian NPA854(2011)81

### 2)Geometry-based



 $\Rightarrow dN/d\phi$  has three peaks,  $\Rightarrow dN/d\Delta\phi$  has three peaks.

B.Alver & G.Roland PRC81(2010)054905

# **VI.** Conclusion

- Traditional approach: hydro with smooth initial conditions.
- New approach: event-by-event hydrodynamics.

It is necessary

► to compare with certain data:

 $\begin{array}{l} v_2(b=0),\\ \text{odd } v_n,\\ \text{two particle correlations in } \Delta\eta - \Delta\phi,\\ \text{as well as (not presented):}\\ v_2 \text{ fluctuations,}\\ v_2(\eta),\\ v_1^{even}, \end{array}$ 

interferometry,

to make precise statements on

 $\eta/s$  using  $v_n(p_{\perp})$  relation initial conditions-flow (ex.  $\epsilon_n$  and  $v_n$ 's).

• To be used in an efficient way, it will require close cooperation with experimentalists.