

Emi Kou, Sergey Barsuk

LAL Orsay

LHCb THCp

IPNO seminar, February 19, 2015

Measurement of n_c production via the decay $n_c \rightarrow p\overline{p}$

First inclusive analysis of charmonium on hadron machines, with hadronic decays of charmonium

Main results :

in the LHCb acceptance (2 < y < 4.5) and for pT > 6.5 GeV/c

- $\hfill\square$ Ratio of prompt production of η_c relative to that of J/ψ
- Three or four pT bins, no binning in rapidity
- $\hfill\square$ Relative η_c inclusive branching fraction from b-hadron decays
- $\hfill\square$ Mass of η_c relative to that of J/ψ

PRD 86 (2012) 034011 arXiv:1409.3612 Ph.D. thesis of Maksym Teklishyn

Charmonia production using hadronic decays

Studies of prompt charmonia production at the LHC

- Important effort to accommodate observed J/ψ production since 1997: NRQCD developments, higher-order corrections, CS, CO
- Consistent and complementary measurements from all LHC experiments compilation by H. Woehri

I However, comprehensive model describing charmonia production still missing (e.g. J/ψ production rates AND polarization)

Charmonia production measurements

- Measure production cross-sections, study pT dependences, as a byproduct measure masses and natural widths
- \square Production of η_c is studied relative to the J/ ψ production (measured using di-muon final state)
- Distinguish prompt charmonium production and charmonium inclusive production in b-hadron decays using separation between reconstructed b-production and decay vertices

Disclaimer/definitions

- Promptly produced charmonia include charmonia directly produced in parton interactions and those originating from the decays of heavier quarkonium states, which are in turn produced in parton interactions.
- In all studies production rates include charmonia from the decays of heavier states

Prompt n_c production

- □ Test relation between the η_c and J/ψ matrix elements within the heavy quark spin-symmetry, further constraint on QCD matrix elements (E. Kou)
- □ NLO (Maltoni et al.) computations lead to a different pT dependence of the production rates for the spin singlet (η_c) and triplet (J/ ψ , χ_{cJ}) states
- □ Recent LHCb comparison of pT spectrum for χ_{c0} , χ_{c2} production with respect to χ_{c1} production, another important comparison is that between χ_{c0} and η_c
- □ Indirect information on the properties of heavier states production, e.g. σ ($\eta_c(2S)$) × BR ($\eta_c(2S) \rightarrow \eta_c(1S)$ X)

□ The only theoretical prediction (LO only !) before the LHCb analysis:

Inclusive n_c production in b-hadron decays

- □ Theory of inclusive production: delicate NLO calculations of singlet contribution
- Compare data on the η_c and J/ψ production in inclusive b-hadron decays to extract information on the octet matrix elements / test matrix element universality (Emi Kou)
- □ While BR(b → $J/\psi X$) is in reasonable agreement with models, the only available (CLEO) experimental UL on BR(b → $\eta_c X$) is below model predictions

	$B^-/\overline{B}{}^0$ admixture	$B^-/\overline{B}{}^0/\overline{B}{}^0_s/b$ -baryon admixture
$\eta_c (1S)$	< 0.9@90% CL	_
$J/\psi~(1S)$	1.094 ± 0.032	1.16 ± 0.10
χ_{c0} (1P)	_	_
χ_{c1} (1P)	0.386 ± 0.027	1.4 ± 0.4
$h_c(1P)$	_	_
χ_{c2} (1P)	0.13 ± 0.04	_
$\eta_c (2S)$	_	_
$\psi(2S)$	0.307 ± 0.021	0.283 ± 0.029

Table 4.2: Branching fractions (in %) of the inclusive b-hadron decays into charmonium states [57]. Admixture of light B^+ and \overline{B}^0 mesons is shown for the measurements of the $e^+e^$ experiments operating at a centre-of-mass energy around $\Upsilon(4S)$ resonance, while admixtures of B^- , \overline{B}^0 , \overline{B}^0_s and b-baryons are considered for measurements from experiments at LEP, Tevatron and LHC

 $p^{*}(J/\psi)$

The LHCb experiment

□ LHCb physics

 $\hfill\square$ Precision studies of rare effects in b- and c-physics

 $\hfill\square$ Production measurements at new energy scale in the forward region

 \Box Large $c\bar{c}$ and $b\bar{b}$ production cross section at LHC with ALL c- and b-species produced

 $\sigma(b\bar{b}) \sim 75 \ \mu b$ at $\sqrt{s} = 7$ TeV in the LHCb acceptance a long LHC fill yields $\sim 1.5 \times 10^9 \ b\bar{b}$ pairs (C.f.: $1.4 \times 10^9 \ b\bar{b}$ pairs in Belle + BaBar over 10 years) $\sigma(c\bar{c}) \sim 1$ mb at $\sqrt{s} = 7$ TeV in the LHCb acceptance

□ Correlated bb production, second b in acceptance once the first b is in (flavour tagging)

LHCb covers forward region: 1.9 < n < 4.9
 optimized for forward peaked HQ production at the LHC

□ only ~4% of solid angle, but ~40% of HQ production cross section

Unique (complementary) acceptance amongst LHC experiments: explore QCD in the forward region
 LHCb covers forward region: 1.9 < η < 4.9

θF

IPN Orsay, 19.02.2015

 θ_b [rad]

LHCb detector - single-arm forward spectrometer 10-250 mrad (V), 10-300 mrad (H)

Vertex Locator: precise reconstruction of tracks and vertices

- □ Excellent spatial resolution, down to 4µ for single tracks
- □ Precise impact parameter measurement, $\sigma_{TP} = 11.6 + 23.4/pT [\mu]$
- □ Precise primary vertex reconstruction, $\sigma_x = \sigma_x = 13\mu$, $\sigma_z = 69\mu$ for a vertex of 25 tracks

- Detector well understood, simulation describes data
- Vertex Locator (VELO) provides excellent proper time resolution

Lifetime	Value [ps]
$\tau_{B^+ \to J/\psi K^+}$	$1.637 \pm 0.004 \pm 0.003$
$\tau_{B^0 \to J/\psi K^{*0}}$	$1.524 \pm 0.006 \pm 0.004$
$\tau_{B^0 \to J/\psi K_s^0}$	$1.499 \pm 0.013 \pm 0.005$
$\tau_{\Lambda^0_b \to J/\psi \Lambda}$	$1.415 \pm 0.027 \pm 0.006$
$\tau_{B^0_s \to J/\psi \phi}$	$1.480 \pm 0.011 \pm 0.005$

VELO: resolving $B_s\overline{B}_s$ oscillations

 \Box Vertex resolution allows to resolve fast (x~27) $B_s \overline{B}_s$ oscillations

Charged particles identification performance

- 2 RICH detectors (25-300 mrad, 15-120 mrad), 3 radiators (Aerogel, C₄F₁₀, CF₄), system of light, radiation resistant mirrors, light R-O by HPD
- □ Genuine $\pi/K/p$ samples identified from kinematics only □ PID performance evaluated from data

Efficiency/rejection: reasonable agreement between data and simulation

IPN Orsay, 19.02.2015

Charged hadron ID with RICH

Charged hadron ID with RICH: CPV in $B_{(s)}$

First observation of CP violation in the decays of B_{s} mesons

IPN Orsay, 19.02.2015

First observation

LHCb operation

 \Box LHCb collected data corresponding to JLdt ~38 pb⁻¹ in 2010, 1.1 fb⁻¹ in 2011, 2.1 fb⁻¹ in 2012

LHCb Integrated Luminosity pp collisions 2010-2012

□ Visual average number of vertices is higher, $\mu \sim 1.4$, compared to nominal $\mu = 0.4$

□ Higher $\mu \rightarrow$ higher track multiplicity, 1 PV gives 30 tracks/rapidity range,

more difficult reconstruction

ightarrow background for D and B decay vertex reconstruction and matching

average minimum distance between 4 PVs ~12 mm, comparable to average B travel distance ~10 mm

Data analysis: sample and trigger

□ Data sample: 0.7 fb⁻¹ at $\int s = 7$ TeV (2011), 2.0 fb⁻¹ at $\int s = 8$ TeV (2012)

LOHadron trigger, followed by dedicated trigger lines (Jibo He) at the HLT1 and HLT2 levels

□ **Signature**: two well-recontructed high-pT tracks, identified as (anti-) protons, forming a good quality vertex, and a high-pT charmonium candidate

□ Separate **prompt** and **b-decay production** using pseudo-decay time: $T_z = \Delta z M/p_z z$

□ (Almost) all selection (including PID!) at trigger level

 \Box Specifically take into account small feed-down from $J/\psi \rightarrow pp\pi^{o}$

Selection

- □ Suppress busy events, SPD multiplicity < 300
- Proton candidates:
 - □ Track quality, χ^2 /ndf < 4
 - □ Particle ID, DLL_{pK} > 15, $DLL_{p\pi}$ > 20 (result stable against larger values of the cut)
 - □ Momentum, pT > 2 GeV/c
- □ Charmonium candidates:
 - Vertex quality, X²/ndf < 9</p>
 - \Box Momentum, pT > 6.5 GeV/c

Prompt and b-decay production candidates

- Primary vertex vs. charmonium candidate decay vertex
- **D** Separation between the two samples: pseudo-proper lifetime $T_z = \Delta z M/p_z z$
- **D** Prompt production candidates: $T_z < 80$ fs
- \Box b-decay production candidates: $\tau_z > 80$ fs and $\chi^2_{IP}(p)/ndf > 16$
- \Box Results stable against variation of the τ_z cut value

Signal description

- □ Detector resolution: two Gaussian functions, ratios σ^a/σ^b , $\sigma_{nc}/\sigma_{J/\psi}$, and the fraction of narrow Gaussian fixed from MC
- \square Convolution of Breit-Wigner function with detector resolution for η_c
- □ In the fit to prompt spectrum:
 - \square Resolution σ^a and the η_c natural width fixed to the central values from the b-decay production analysis.
 - \square Gaussian constraint on the η_c and J/ψ masses is applied using the b-decay production analysis.

Procedure

- Extract numbers from the fit
- Re-calculate signal event yields, taking into account cross-feed

$$\begin{array}{ll} \text{Obtain ratios:} & \frac{\mathsf{N}^{\mathsf{P}}(\mathsf{n}_{c})}{\mathsf{N}^{\mathsf{P}}(\mathsf{J}/\psi)} = \frac{\sigma(\mathsf{n}_{c}) & \times \mathsf{BR} \; (\mathsf{n}_{c} \rightarrow \mathsf{pp})}{\sigma(\mathsf{J}/\psi) \times \mathsf{BR} \; (\mathsf{J}/\psi \rightarrow \mathsf{pp})} \\ \\ & \frac{\mathsf{N}^{\mathsf{S}}(\mathsf{n}_{c})}{\mathsf{N}^{\mathsf{S}}(\mathsf{J}/\psi)} = \frac{\mathsf{BR}(\mathsf{b} \rightarrow \mathsf{n}_{c} \; \mathsf{X}) & \times \mathsf{BR} \; (\mathsf{n}_{c} \rightarrow \mathsf{pp})}{\mathsf{BR}(\mathsf{b} \rightarrow \mathsf{J}/\psi \; \mathsf{X}) \times \mathsf{BR} \; (\mathsf{J}/\psi \rightarrow \mathsf{pp})} \end{array}$$

Production of $\eta_c(1S)$ in b-hadron decays

First measurement

□ Assuming that pT requirement does not bias $p(J/\psi,n_c)$ in the b-hadron rest frame, and using B(b→J/ψ X) = (1.16 ± 0.10)%,

 $\mathcal{B}(b \to \eta_c(1S)X) = (4.92 \pm 0.64 \pm 0.25 \pm 0.67_{\mathcal{B}}) \times 10^{-3}$

First measurement

□ No contradiction to CLEO UL

Prompt production of $n_c(1S)$

Differential production cross-section

Prompt production Production in b-decays Differential production crossnb GeV/c nb GeV/c b) a) section in pT bins LHCb LHCb 0.7 fb⁻¹ 0.7 fb^{-1} 10² 10E □ NLO computations: b d dp∣d (F. Maltoni and A. Polosa, Phys. Rev. D70 √s = 7 TeV (2004) 054014; A. Petrelli et al., Nucl. 10 Phys. B514 (1998) 245; J. H. Kuhn and E. Mirkes, Phys. Rev. D48 (1993) 179) √s=7 TeV √s=7 TeV 8 10 12 14 16 10 12 different pT dependence of the p_⊤ [GeV/c] p₇ [GeV/c] production rates for spin singlet $(n_c (1S))$ and triplet (J/ψ) states DeV/c GeV/ c) d) LHCb LHCb 2.0 fb^{-1} 2.0 fb^{-1} 10 10² b d 힘명 √s = 8 TeV 10 √s=8 TeV √s=8 TeV 16 6 10 12 10 12 p₇ [GeV/c] p_⊤ [GeV/c]

 \Box Similar pT behaviour of the J/ ψ and $\eta_c(1S)$ rates

 \Box New theory results since then \rightarrow Emi Kou

Mass and natural width of $\ensuremath{n_{\rm c}}$

 \Box Using low background sample of the η_c candidates from b-hadron decays, the mass of η_c relative to that of J/ψ is measured

- $\hfill\square$ For that momentum scale calibration is performed
- □ The mass difference is measured to be

 ΔM = 114.7 \pm 1.5 \pm 0.1 MeV/c2

- □ Systematic uncertainty is small with respect to the statistical one and is dominated by the description of the $J/\psi \rightarrow pp\pi^{\circ}$ reflection shape
- $\hfill\square$ The results are consistent between the 2011 and 2012 samples
- $\hfill\square$ X-check for absolute J/ ψ mass determination:

 $M(J/\psi)$ = 3096.66 \pm 0.19 \pm 0.02 $\,$ MeV/c2

in good agreement with the PDG average

- □ The △M result agrees to the PDG average, employs a method different from more precise BES result, and has better uncertainty than other previous measurements
- \square The η_c natural width value $\Gamma(\eta_c)$ = 25.8 \pm 5.2 \pm 1.9 MeV also agrees with the PDG value
- Systematic uncertainty is small with respect to the statistical one and is dominated by the detector resolution

IPN Orsay, 19.02.2015

Learn more on charmonia production using hadronic decays

- Charmonia decays to hadrons are used to study charmonia production at LHCb.
 The n_c prompt production cross-section and branching fraction of b-hadron decays into n_c are measured for the first time.
- □ More data in 2015+, measure η_c state prompt production at $\int s = 13-14$ TeV
- \square Proposed to favour $\phi\phi$ combinations in the **trigger** for 2015+
- Include decays to other hadronic final states
- $\hfill\square$ Use hadronic modes for CEP studies

Backup

Production yield ratios and systematic uncertainties

7 TeV:
$$\frac{N^{P}(n_{c})}{N^{P}(J/\psi)} = 1.24 \pm 0.21 \pm 0.20$$

8 TeV: $\frac{N^{P}(n_{c})}{N^{P}(J/\psi)} = 1.14 \pm 0.21 \pm 0.18$

$$\frac{N^{s}(n_{c})}{N^{s}(J/\psi)} = 0.302 \pm 0.039 \pm 0.015$$

	production in	prompt production	
	<i>b</i> -hadron decays	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \mathrm{TeV}$
Mean value	0.302	1.24	1.14
Statistical uncertainty	0.039	0.21	0.21
Signal resolution ratio (MC)	0.006	0.04	0.03
Signal resolution variation		0.01	0.01
Prompt production spectrum	0.003	0.07	0.06
Γ_{η_c} variation		0.15	0.14
Fit range variation	0.009	0.06	0.06
Background shape variation	0.004	0.07	0.06
$J/\psi \rightarrow p\overline{p}\pi^0$ shape variation	0.005	0.02	0.02
Cross-talk between prompt sample			
and sample from b -hadron decays	0.008	0.01	0.01
J/ψ polarization		0.02	0.02
Systematic uncertainty,	0.015	0.20	0.18
quadratic sum			

Table 1: Systematic uncertainty decomposition for the production yield ratio $\frac{N_{\eta_c}}{N_{J/\psi}}$.

Inclusive production from b-decays: pp invariant mass spectrum

□ Samples at $\int s = 7$ TeV and $\int s = 8$ TeV are consistent, including background shape, and are combined.

 $\int s = 7 \text{ TeV}$: $n^{P}(\eta_{c}) = 13370 \pm 2260$ $n^{P}(J/\psi) = 11052 \pm 1004$

$$\int s = 8 \text{ TeV}$$
:
 $n^{P}(n_{c}) = 22416 \pm 4072$
 $n^{P}(J/\psi) = 20217 \pm 1403$

IPN Orsay, 19.02.2015