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* Introduction
o Anisotropic flow
o Multiparticle correlations and cumulants

* Focus of today’s talk:

o ‘Higher order Symmetric Cumulants’
C. Mordasini, AB, D. Karakog, F. Taghavi, Phys. Rev. C 102, 024907 (2020)

o ‘Multiharmonic Correlations of Different Flow Amplitudes...’
ALICE Collaboration, Phys. Rev. Lett. 127 (2021) 9, 092302

o ‘Multivariate cumulants in flow analyses: The Next Generation’
AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619

o ‘Event-by-event cumulants of azimuthal angles’
A. Bilandzic, arXiv:2106.05760
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Group photo from the workshop
‘Initial State Fluctuations and Final State Correlations’,
held at ECT* in Trento in July, 2012



A new state of matter: Quark-Gluon Plasma

* Phase diagram of Quantum Chromodynamics:
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Which properties of QGP are we testing?

* Most notably:
o Equation of state
o Shear viscosity
o Bulk viscosity

O ...

European Research Council
Estanlshas by the Europsan Commissian

New State of Matter Is 'Nearly Perfect' Liquid

Physicists working at Brookhaven National
Laboratory announced today that they have
created what appears to be a new state of matter
out of the building blocks of atomic nuclei, quarks
and gluons. The researchers unveiled their
findings—which could provide new insight into the
composition of the universe Just moments after the

big bang—today in Florida at a meeting of the
American Physical Society. SCIENTIFIC|
AMERICAN

There are four collaborations, dubbed BRAHMS, LW ‘ TP _Ii
PHENIX, PHOBOS and STAR, working at Early Universe was "liquid-like
Brookhaven's Relativistic Heavy lon Collider Physicists say they have
(RHIC). All of them study what happens when two created a new state of hot,

dense matter by crashing
interacting beams of gold ions smash into one together the nuclei of gold

another at great velocities, resulting in thousands 1

the researchers analyzed the patterns of the atom.atoms'
found that the particles produced in the collisions tyye high-energy collisions
school of fish does. Brookhaven's associate laboréprised open the nuclei to
physics, Sam Aronson, remarks that "the degree creveal their most basic

and extremely low viscosity of the matter being forparticles, known as quarks and
perfect liquid ever observed.” gluons.

The researchers, at the US  Thc impression is of matter that is
Brookhaven National more strongly interacting than
Laboratory, say these particles predicted
were seen to behave as an almost perfect "liquid"”.

The work is expected to help scientists explain the conditions
that existed just milliseconds after the Big Bang.

Associated Press
Tuesday, April 19, 2005; Page AD5

Universe May Have Begun as Liquid, Not Gas

The Washington Post

New results from a particle collider suggest that the universe behaved like a
liquid 1n its earliest moments, not the fiery gas that was thonght to have
pervaded the first microseconds of existence.

Early Universe was a liquid

Quark-gluon blob surprises particle physicists.
by Mark Peplow

The Universe consisted of a perfect liquid in its first moments, according to
results from an atom-smashing experiment.

Scientists at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory on Long Island, New York, have spent five years searching for the

quark-gluon plasma that is thought to have filled our Universe in the first

microseconds of its existence. Most of them are now convineed they have found

it. But, strangely, it seems to be a liquid rather than the expected hot gas. 5



How can we produce Quark-Gluon Plasma? e«

* Heavy-ion collisions at collider experiments at LHC:
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Pre-reaction Hadronization Detection
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* QGP filled the Universe few microseconds after Big Bang:

Quark-Gluon
Plasma Nucleons Nuclei Atoms Today

10 ¢sec 10 *sec 3 min 13.7 billion yr



Anisotropic flow phenomenon

* Transfer of anisotropy from the initial coordinate space into
the final momentum space via the thermalized medium:

Coordinate space: Collective interaction Momentum space:
initial asymmetry pressure final asymmetry

Tu'" J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992) 7
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Two pillars of flow development e

* Anisotropic flow will develop in heavy-ion collisions only if
both of the following two requirements are met:
o Initial anisotropic volume in coordinate space: ‘Trigger’
o Thermalized medium: ‘Transfer’

Credits: D.D. Chinellato, ICHEP 2020

* Anisotropic flow is a sensitive probe both of initial
conditions in heavy-ion collisions, and of QGP’s transport
properties (e.g. of its shear viscosity)

Tum 8



Hydrodynamic flow in-plane

* Non-trivial effect which is sensitive to transport coefficients
of QGP (e.q. its shear viscosity)

If anisotropic flow has developed, neighboring layers are moving at different
relative velocities, parallel displacement is opposed by QGP’s shear viscosity

large anisotropic flow < small shear viscosity

Tum 9



Fourier series

* We use Fourier series to describe anisotropic emission of
particles in the plane transverse to the beam direction after
every heavy-ion collision:

1

flo) = Gy 142 Z’Un cos|n(p — ¥,)]

* v, . flow amplitudes
* Y. :symmetry planes
* Anisotropic flow is quantified with v,, and ¥,
o vq Is directed flow
o V4 Is elliptic flow
o v3 IS triangular flow
o V4 IS quadrangular flow, etc.

Tu-" S. Voloshin and Y. Zhang, Z.Phys. C70 (1996) 665-672 10
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Fourier series erc

* In non-central heavy-ion collisions, due to collision
geometry the initial volume is almond shaped (ellipsoidal)
o Dominant harmonic is v, (elliptic flow)

&

* In most central (head-on) collisions, due to fluctuations of
participating nucleons any shape can develop, all (lower) order
harmonics are equally probable

Credits: D.D. Chinellato,
ICHEP 2020
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Multiparticle correlations and cumulants
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Multiparticle azimuthal correlations r

* The most general result, which relates multiparticle
azimuthal correlators and flow degrees of freedom:

(cos|m @1+ +ni@r)]) = v, -V cos|m ¥y, +- -+ 'y, )]

R. S. Bhalerao, M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 84 034910 (2011)

* Flow amplitudes v,, and symmetry planes ¥,

* Alot of non-trivial and independent flow observables for
different choices of harmonics n;

o Examples: 2- and 4-particle azimuthal correlations

(cosin(p—@)]) = v;
(cosin(Qr+p—@3—@4)]) = v,




Scaling of stat. and sys. errors ere

* Scaling of statistical uncertainty (N is number of events, M is
multiplicity, v is flow strength, k is order of correlator):

1 1 1
/N MFK/2 yk=1

* Scaling of non-collective contribution:

O,

* For both reasons, multiparticle correlations are precision
technique only for: a) large multiplicities, b) large flow

m 14



2-particle cumulants in general e

* X; denotes the general i-th stochastic variable
* The most general decomposition of 2-particle correlation is:

(X1Xa) = (X1) (X2) + (X1 X2),

* By definition, the 2" term on RHS is 2-particle cumulant
* Cumulants cannot be measured directly, however:

(X1X2),. = (X1 X2) — (X1) (X2)



3-particle cumulants in general erc

* The most general decomposition of 3-particle correlation is:

:.=g@+§§+27+©©+c>

* Or written mathematically:
(X1XX3) = (X1) (X2) (X3)
+  (X1X2), (X3) + (X1XG) . (X2) + (X2 X3), (X3)
+  (X1X2X3),

* The key point: 2-particle cumulants were expressed
Independently in terms of measured correlations in previous step!

(X1X2), = (X1 Xa) — (X1) (X2)
TLUT 16



3-particle cumulants in general e

* Working recursively from higher to lower orders, we
eventually have 3-particle cumulant expressed in terms of
measured 3-, 2-, and 1-particle averages

X1XX3), = (XiX2X3)
- (XiX2) (X3) — (X1 X3) (X2) — (X2X3) (X1)
+  2(X1) (X2) (X3)
* In the same way, cumulants can be expressed in terms of

measurable averages for any number of particles
o The number of terms grows rapidly



Cumulants in flow analyses

* Cumulants were introduced in flow analyses by Ollitrault et
al in two seminal papers:

N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C 63, 054906 (2001)
N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C 64, 054901 (2001)

* Traditionally, azimuthal angles are chosen as fundamental
observables in the cumulant expansion
* Based on this approach, one derives e.g. v,{4} observable

o It gives an estimate for flow harmonic v,, by using 4-particle
azimuthal cumulant (not 4-p azimuthal correlator!)

o For large multiplicities, v,{4} suppresses well nonflow effects

* But this traditional approach (‘old paradigm’) yields very
weird and inconsistent results when applied to the
correlations of different flow amplitudes

Tum 18



‘Classical’ flow observables

* |nsensitivity to temperature dependence of n/s
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((cos(me) +n@r—m@3 —ny))).

Symmetric Cumulants SC(m,n)

* How to quantify experimentally the correlation between two
different flow amplitudes?
o Symmetric Cumulants (Section IVC in Phys. Rev. C 89 (2014) no.6, 064904)

((cos(m@y+n@—mes —n@y)))
— ((cos[m (@1 —)])) {(cos[n(@1—¢2)]))

* SC observables are sensitive to
differential n/s(T) parametrizations

* Individual flow amplitudes are
dominated by averages (n/s(T))

* Independent constraints both on
initial conditions and QGP properties

SC(m,n)

ALICE Collaboration, Phys. Rev. Lett. 117, 182301 (2016) 3
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Choice of fundamental observable

* Cumulants as used in flow analyses in the last ~20 years:
1. Cumulant expansion is performed on azimuthal angles
2. Azimuthal correlators which are not isotropic are dropped

3. The final result is merely re-expressed in terms of flow
degrees of freedom v,, and ¥, via the analytic relation

(cos[ni @1+ -+ ni@)|) = vn, - -vp cos[ni Wy, +- -+ ¥p, )|
R. S. Bhalerao, M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 84 034910 (2011)
* Few additional remarks:
o Cumulants of v,, and v? are in general different

o v, and ¥, have different properties (e.g. with respect to Lorentz
Invariance)

Tum 21



The root of the problem

* General 2-particle cumulant
(X1X2), = (Xi1X2) — (X1) (X2)

o Old paradigm: fundamental observable is an angle

X| — "9 ., X — e P2
o New paradigm: fundamental observable is a flow amplitude

X1—>vﬁ, X2—>V%,l

* Both choices yielded accidentally the same results for SC(m,n)
observables

* But results for SC(k,I,m), SC(k,I,m,n), etc., are in general different
o Which paradigm is correct in general?

C. Mordasini, AB, D. Karakog, F. Taghavi: ‘Higher order Symmetric

TI.ITI Cumulants’, Phys. Rev. C 102, 024907 (2020) 29



Generalization: SC(k,l,m), SC(k,[,m,n), ... =

* New paradigm:
1/ Cumulant expansion directly on flow amplitudes v?:

SC(k, 1,m) = (vpvivim) = (v (vm) = (vivm) (7)) = (vivm) (vie) + 2 i) (v7) (vm)

2/ Azimuthal angles are used merely to build an estimator for the
above observable:

SC(k,l,m) =

<
-
<
<

((cos[kp1+1lpa+mps—kps—Ilps —mps)))

(
— {
— {

2

cos kg1 +lpz—hkps —lpa])) ((cos[m(ps —we)]))

cos[kp1 +mpa —kes —ms])) ((cosll (993— 1)

cos|lps +mps—lps —mps|)) ({cos[k(01—p2)]))
({cos[k(p1—p2)])) ({cos|l(ws—wa)])) ((cos[m(ps —¢a)]))

_|_

C. Mordasini, AB, D. Karakog, F. Taghavi: ‘Higher order Symmetric Cumulants’,
Phys. Rev. C 102, 024907 (2020)

Tum 23



SC(k, I, m) in ALICE

* C. Mordasini, Ph.D. thesis, “Generalisation of the Cumulants of ... ”
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ALICE Collaboration, Phys. Rev. Lett. 127 (2021) 9, 092302
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Shear vs. bulk viscosities

* Can we separate the effects of shear (n) and bulk (¢)
viscosities?

* Isotropic fluctuations
Neighbouring layers move at equal velocities
Generally preserves the ellipse shape
Main sensitivity to ¢/s

« Shape fluctuations
Neighbouring layers move at different velocities
Sensitivity to n/s

Credits: C. Mordasini

* We need new observables which can separate these
different sources of fluctuations

Tum 25



‘New estimator for symmetry plane
correlations in anisotropic flow analyses’

A. Bilandzic, M. Lesch, F. Taghavi, Phys. Rev. C 102, 024910 (2020)

Tum 26



Symmetry plane correlations
* ATLAS: Phys. Rev. C 90, 024905

(cos4(<l>2-<b a)
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AB, M. Lesch, F. Taghavi, Phys. Rev. C 102, 024910 (2020)
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‘Multivariate cumulants in flow analyses:
The Next Generation’

A. Bilandzic, M. Lesch, C. Mordasini, F. Taghavi, hitps://arxiv.org/abs/2101.05619



https://arxiv.org/abs/2101.05619

Fundamental properties of cumulants

* We reviewed everything from scratch and supported proofs for:
o Statistical independence
Reduction

O
o Semi-invariance _ . .
H " For all technical details, see Section Il and
° Homogenelly Appendix A in arXiv:2101.05619
o Multilinearity
o Additivity
O

* The main strategy in this technical paper is divided into two steps:

o Confront all existing observables in the field named cumulants with
these fundamental properties

o For the ones which fall to satisfy them, provide the alternative
definitions which do satisfy all fundamental properties of cumulants

AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619

Tum 30



Main conclusions

* The main conclusion #1: One cannot perform cumulant
expansion in one set of stochastic observables, then in the
resulting expression perform the transformation to some new set
of observables, and then claim that the cumulant properties are
preserved in the new set of observables

o After such transformation, the fundamental properties of cumulants
are lost in general

* The main conclusion #2: The formal properties of cumulants
are valid only if there are no underlying symmetries due to which
some terms in the cumulant expansion would vanish identically

o Due to symmetries, (e™¢i) = 0, (e™@i*¢)) ) = 0, etc., all vanish
o There are no obvious symmetries for (v?), (viv?), etc., to vanish

AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619

Tum 31



Necessary conditions for cumulants

* From the fundamental properties of cumulants (statistical
Independence, reduction, semi-invariance, homogeneity,
multilinearity, additivity, etc.), we have established the
following two simple necessary conditions:

1. We take temporarily that in the definition of A(Xy,..., Xy) all observables Xy,..., Xy are statistically inde-

pendent and factorize all multivariate averages into the product of single averages = the resulting expression
must reduce identically to 0;

Lo

We set temporarily in the definition of A(Xyq,..., X ) all observables Xy, ..., Xy to be the same and equal to

X = for the resulting expression it must hold that

AMaX +b) = aVA\(X), (23)

where a and b are arbitrary constants, and N is the number of observables in the starting definition of
AMXp, oo, X ).

Multivariate observable is a multivariate cumulant only if it satisfies both
above requirements (arXiv:2101.05619)

Tum 32



Reconciliation

* New flow observables (‘The Next Generation’) which do
satisfy all formal mathematical properties of cumulants:
o ‘Symmetric and Asymmetric Cumulants’ (genuine

multiharmonic correlations of flow amplitudes)
- See arXiv:1901.06968 and Sec. V in arXiv:2101.05619

o ‘Cumulants of symmetry plane correlations’
- See Sec. Vlin arXiv:2101.05619

o ‘Event-by-event cumulants of azimuthal angles’
- See Sec. IV in arXiv:2101.05619 and arXiv: 2106.05760



Asymmetric Cumulants (AC)

* Generalization of Symmetric Cumulants

* Fundamental observable is v*
o Choice driven by experiment: The simplest flow moment which can be
estimated experimentally with azimuthal correlations

* Each of these observables is insensitive to lower-order correlations,
because they satisfy all mathematical properties of cumulants

x10~°

=

£00 g

ACq 1(m,n) =

T

333N
oo X
A ww
53335
nouou
ok
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Sec. Vin arXiv:2101.05619

- AC3 1 (m,n) =

>< n>72< 'm n)( )+2( 7271) <?21>

(Umtn) — (v

(t ) - (h’i)(i"ﬁ) = 3(vpup) {vn,) —
. (
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+ 242 v2Y (02 Y (02) + 12(v 02 ) (v2)?
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Cumulants of symmetry plane correlations &=

* By far the most difficult case to crack...

* These observables bring all previous measurements of symmetry plane
correlations to the next level
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Sec. VI in arXiv:2101.05619

Tum 35



‘Event-by-event cumulants of azimuthal
angles’

A. Bilandzic, arXiv:2106.05760 (prepared for ‘Offshell-2021°)



Main idea

* Traditional approach: cumulants of azimuthal angles are
defined in terms of all-event averages.:

enf(2) = (o)) — (3 (e o)

o Due to underlying symmetries, all terms which are not isotropic are
averaged out to 0 => fundamental properties of cumulants are lost

* New approach: cumulants of azimuthal angles are defined
In terms of single-event averages:

ki = <€m(901—902)> B <€ing01><€—in¢2>

‘Event-by-event cumulants of azimuthal angles’

o Despite underlying symmetries, all terms are kept, and this remains
true at all higher orders => interpretation and meaning of these new
cumulants is completely different

Tum 37



* Toy Monte Carlo study: Azimuthal angles are sampled pair-wise
=> only 2-particle correlations are present

o New 2-particle cumulants correctly recover the theoretical input
o New 4- and 6-particle cumulants are identically O

[7}] ~ w =
< b £ 0.002—
c 02 . ® C
- - = r -s—s—f—f-8—8—588-a8s-880-885-80 808
g A g ) o
© 01:_‘.: _,_ ©_0.002F .
I e = e = == s T T 000t e
- - j'#?—’: 0008 +++
01 [ Re[x, ] (th) L 7
e " Relx; ] (exp) oom
021 H Im[x, ] (th) oot +
- o Imlx, ] (exp) S
_0_3:_ .‘"_‘,-"T - RE[KL-'IH] (exp) —0.012?_
- L] Ll | | m Refky 14,4 (€XP) —0-014I_||||I|||.I....I....I....I....I....I....
0 20 40 60 80 100 120 140 160 180 200 200 300 400 500 600 700 800 900 1000
multiplicity multiplicity
* Works only if we have full control over combinatorial background
Tu." Sec. IV in arXiv:2101.05619 38



Role of combinatorial background e

* The origin of the problem: The dataset is randomized
o Particles emitted in the same process: ‘signal’
o Particles taken from different processes: ‘background’

* |n most analyses in high-energy physics, ‘signal’ and
‘background’ are separated by using mixed-event technique

o Not applicable for azimuthal angles, due to random event-by-
event fluctuations of impact parameter vector

* Can we instead analytically solve the problem of
combinatorial background?



Statistical independence e

* |f two random observables, x and y, are statistically
Independent, then their joined 2-particle probability density
function (p.d.f.) fully factorizes into marginal p.d.f.’s:

Sy, y) = fi(x) f5(y)

* Two marginal p.d.f.’s are defined as:
falx) = /Y fry(x,y)dy
Hy) = /Xfxy(an)dx

* In general, f,(x) and f, (y) are two different p.d.f.’s
m 40



Three-particle correlations ere

* |f particles are emitted from p.d.f. f(x,y,z), and if the resulting
sample is randomized, what is the p.d.f. w(x,y,z) which
describes the final randomized sample?

* The most general result:

w(x,¥,2) = pafo:(x,5,2)
+ DB, {fxy (X, ) f3(2) + Loy (6, ) 3(2) + fre (x,2) fe ()

+ fee (6,2) F(9) + iz (0,2 f(6) + iz (90.2) fo ()]

+ PBy o (X2 fe(2) + fre( ) A 0) + Fre (3 2) fo

) x)]
+ poy L) £e(0) (@) + [0 fs(0) f(2) + fo(0) £0) f2(2)]
+ pe; [ LA 0) + L)) f(2) + £(0) f(2) fulx)
)

FHOARLE + LQLOLD +£ELDL)]
+ pes () [ (9) f(2) -

* Universal combinatorial weights: p, Pg: Peo Pc1 Pez. Pes

* Marginal p.d.f.'s: £,(x), f,(¥), f,(2), f,,(x.y), f,.(x,2), f,,(¥.2)
Tum 41



0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Combinatorial weights (3-particle)

* Universal and depend only on multiplicity:
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e

Toy Monte Carlo (3-particle)

* Quantitative description of 3-particle azimuthal correlation in
the randomized sample
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Backup slides



Role of symmetries

* Cumulant is identically O if one of the variables in it is statistically
Independent of the others

o This holds true over the whole phase space
* Reflection symmetry

o Cumulant can be accidentally O due to symmetry f(x,y) = f(x,-y) but in
this case they are never 0 over the whole phase space

* Permutation symmetry

o Marginal distributions of different variables are the same
* Frame independence
* Relabelling

o Azimuthal correlators of different variables are estimated from exactly
the same sample => properties of cumulants are lost

Sec. Il in arXiv:2106.05760



Two-particle correlations e

* |f particles are emitted from p.d.f. f(x,y), and if the resulting
sample is randomized, what is the p.d.f. w(x,y) which
describes the final randomized sample?

* The most general result:
w(x,y) = pafir(x,y) + pafe() () + pe [ fe(0) fr(y) + f () ()]

* Universal combinatorial weights: p,, Pg, Pc
* Marginal p.d.f.’s: f,(x), fy(y)



Combinatorial weights (2-particle)

* Universal and depend only on multiplicity:

F_—
045 = 2-particle combinatorial weights:
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Toy Monte Carlo (2-particle)

* Quantitative description of 2-particle azimuthal correlation in
the randomized sample
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Example: 2-particle cumulants

* How to use this new recipe in practice?
* Reminder: General 2-particle cumulant

(X1X2),. = (X1 X2) — (X1) (X2)

As an elementary 'examplea we perform these two checks for the siinplest. two-variate cumulant, r(Xq, Xo) =
(X1X9) — (X1) (Xg). The first check leads immediately to (X1, X9) = (X1) (X2) — (X1) (X2) = 0. Following the
second check, we have that k(X) = (X?) — (X )2, so that:

k(aX +b) = ((aX +b)?) — (aX + b)?
— a? (X?) +2ab (X) + b* — a® (X)? — 2ab (X)) — b*
_ 42 (<X2> B (X)Q)
— k(X)) (24)

as it should be for a two-variate cumulant.

* Despite its simplicity, most of observables named cumulants in the field
fail to satisfy this new recipe. What are the alternatives?

AB, M. Lesch, C. Mordasini, F. Taghavi, arXiv:2101.05619

Tum 50



The ‘flow principle’ e

* Correlations among all produced particles are induced
solely by correlation of each single particle to the collision
geometry

Emlawt,

b AW

* Analogy with the falling bodies in gravitational field (rhs)

* Whether or not particle are emitted simultaneously, or
one by one, trajectories are the same
UM © These are statistically independent trajectories 51




Statistical independence, back to flow

* |f anisotropic flow is the only source of correlations between
produced particles, their joint n-variate p.d.f.

f(@r,.. n)

factorizes into product of n single-particle marginal p.d.f.'s:

f@1, . 00) = fo,(01) - fo,(Pn)

* From ‘flow principle’: All marginal p.d.f.’s are the same, and
therefore parameterized by the same Fourier series:

flor,....0,) = f(qol_)---f(eon)

f9) = o [1+2 X vacosln(o—,)




Elementary example: 2-particle correlation er

* When only flow correlations are present, the relation
between azimuthal correlators and flow moments Is exact!
o For instance: )

(cosln(Q1—@)]) = v,

* This can be derived analytically in merely 3 steps:

cosin(on—a))y = [ [ coslalon—2)17(01,02)dend

* Then, use:
1. Factorization of joint p.d.f. f(@1,0,) = (@) f(@,)
2. Each single particle p.d.f. f(¢) Is given by same Fourier series
3. Orthogonality relations of trigonometric functions

* Exactly the same derivation works for any other correlator!

Tum 53



Q-vectors

* Q-vectors (or flow vectors) are among the most important
fundamental objects in flow analyses nowadays

* Three definitions:
o M-particle Q-vector

M .
0, = Z e
i=1
o Unit Q-vector
U, = eingo
o Reduced Q-vector
I
n — \/M

m 54



Q-vectors Lerc

ean Research Council

* What Q-vectors have to do with multi-particle correlation
techniques?

* Remarkaby, we can analytically express any multi-
particle azimuthal correlator in terms of Q-vectors in
such a way that all self-correlations are exactly removed
o First realized by S. Voloshin ~ 10 years ago

o This realization is the most important breaktrough in the field of
correlation technigues of late

* Example: 2) = (cos( (qol—goz))>

—¢;)

i ,j=1
(i#))
1

_ <1012
LTI ()2 0= 55




Q-vectors r
* Example: Analytic result for 4-p correlation -
_ InQ;
@ = (cos(n(or+ g2 —9) o = L
1 M _ M
= oo Y M Pt @)~ Q=) 0y = Y &2
(3)4! = =
(i j#kA])
1 * yk
- [[On[*+]Qanl* =2 - 93¢ [02,0505] —4(M~2) |,
1 )4!
+2M(M—3)]

* The key point: The RHS can be obtained in the single loop
over all azimuthal angles of particles
o Both exact and fast formalism

A.B. et al, Phys. Rev. C 89 (2014) no.6, 064904 [arXiv:1312.3572 [nucl-eX]].
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* All other sources of contributions to azimuthal correlators,
besides flow correlations, we classify as nonflow

o Due to nonflow, flow degrees of freedom estimated with
azimuthal correlators, will be systematically biased

* |t is hopeless to quantify all possible sources of nonflow
o Is there a systematic way to suppress ‘em all?

* Flow vs. nonflow:

o Flow is collective effect, correlates all particles
o Nonflow is generally a correlation among few particles



Nonflow examples

* Physical: Resonance decays, jets, etc.
* Detector artifacts: Track splitting in reconstruction, etc.
* Computational: Autocorrelations

<ein(§01_§02)> : )] # 03

in(Q1+Pr—P3—Py)
e . PLF Q2 F O3 F Py
Tum < > N7T0TEBTE 58



Multiparticle correlation techniques r
* Monte Carlo study, fixed v = 0.05 as an input:
0.012
0.015—
0.008 —
0.006 —
0.0045—
0.0023—
0{_]2 0{]1 0 0.01 0.02 0.03 0.04 005 0.06
111 @)
Oy ~ VN MK/2 k=1
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