Prospectives IN2P3/IRFU 2012-2022

Photons, jets, hadrons charmés et beaux

Magali Estienne

pour le groupe Plasma Quarks-Gluons

Giens, 2 avril 2012

Cette présentation

<u>Note</u> : présentation non exhaustive sur la physique du QGP à l'aide des sondes dures

- Motivations pour l'étude des photons, des jets et des hadrons charmés et beaux
- Premières analyses de physique au LHC et prochaines étapes d'analyse
- Les projets d'upgrade français :
 - ALICE-France
 - Upgrade du trajectographe interne, ITS
 - Upgrades du calorimètre
 - CBM : Diagramme de phase et point critique

Motivations pour l'étude des saveurs lourdes ouvertes, des photons et des jets

Les sondes dures pour caractériser le plasma

Les sondes dures produites tôt :

m_b > m_c >> Λ_{QCD}, jets et photons issus de processus durs de grande énergie
Glauber scaling α N_{coll}

- Modifiées ensuite dans le plasma
- Conditions initiales de formation
- Propriétés du milieu dense
- Degré de thermalisation

Emergence à RHIC en 2003/2004, priorité pour RHIC II (> 2013)

Sondes privilégiées au LHC → 2022, qui s'imposent et motivent les upgrades

ME - Prospectives Ions lourds (III) - Giens, 02/04/2012

Sonder l'état final avec le RAA

 \Box Production thermique à bas p_T

 $\hfill \Box$ Séparation baryon / méson à p_T intermédiaire

□ Forte suppression à grand p_T
➤ Y a-t-il une différence significative entre baryon et méson ?

Même comportement observé dans le secteur de l'étrangeté

A poursuivre dans le secteur des saveurs lourdes...

Hadrons lourds, photons et jets

Mesures indirectes via décroissances semi-leptoniques

Anomalie de suppression ?

LHC et upgrades

Nécessité de mesures directes des mésons D par canal hadronique Discrimination non modèle dépendante charme / beauté et rapport Λ_c/D Mesures de précision, corrélations X-jet (X= γ , jet, b, Z) et interactions jet milieu ₆

Motivations pour les jets et les photons

Photons : non affectés par le milieu dense Jets : bon contrôle de leur production dans le vide. Leurs forme et composition sont modifiées dans le milieu. Mesure globale du quenching !

Premières analyses de physique au LHC et prochaines étapes d'analyse

Premières analyses de physique dans les secteurs du charme et des jets pour ALICE et CMS

Anomalie du rapport Λ/K_{s}^{0} au LHC

□ En PbPb, l'amplitude augmente avec la **centralité** et avec √s en comparant RHIC et LHC

□ Tendance confirmée au LHC par la combinaison coalescence/fragmentation ?

Mesures D par canal hadronique, S/B ~1/10

- R_{AA} même constat qu'à RHIC :
 - mésons ~ particules chargées
 - baryons compétition augmentation p_T intermédiaire et suppression à grands p_T,
 - pas de dépendance flagrante avec la saveur et la masse à grands p_T
 - > Que dire du Glauber scaling à bas p_T ?

Mésons B supprimés et photons isolés

Première mesure des mésons B par CMS :

- $B \rightarrow J/\Psi$ mesuré par vertex déplacé
- Première mesure de la suppression des quarks b !
- Suppression quasiment équivalente aux hadrons chargés inclusifs
- Perte d'énergie prédite plus petite du fait de l'effet de "cône mort"

Sondes de référence : Glauber scaling

- Données 2010 (6.8 μ b⁻¹), mesures de photons directs isolés par CMS en ions lourds
- **D** Premières mesures de bosons $Z^0 \rightarrow \mu\mu$ compatibles avec les prédictions théoriques : PRL106 (2011) 212301

arXiv:1201.5069

Bruit de fond jets chargés (p_T<100 GeV/c)

Premières mesures de jets « chargés » en 2010

□ Données PbPb 2010 (~3µb⁻¹), spectres en p_T → 100 GeV/c dominés par les fluctuations du bruit de fond pour $p_T < 60/70$ GeV/c.

Caractérisation du bruit de fond et de ses fluctuations en laboratoire

 Influence du flot : Shift important de l'échelle en énergie des jets en fonction de l'orientation au plan de la réaction

2011, premières mesures avec le calorimètre

 Calorimètre d'acceptance suffisante pour accéder à la reconstruction des jets
« chargés+neutres » avec une bonne résolution

Exploitation du trigger EMCal

facteur de réjection en pp de ~1000

Caractérisation du quenching via les jets

ME - Prospectives Ions lourds (III) - Giens, 02/04/2012

CMS PAS HIN-11-004

Premiers résultats de 2011

arXiv:1202.5022

La suppression persiste jusqu'aux plus grands p_T de jet trigger

Prochaines étapes d'analyse : deux approches différentes pour ALICE et CMS

□ Face à l'augmentation en luminosité au LHC :

Nécessité d'upgrades pour ALICE Prospectives d'analyse de physique à moyens termes

Trois laboratoires en France, 14 physiciens

Un système de détection autosuffisant Concentration sur les analyses de physique jusqu'en 2022

Un laboratoire en France, 6 physiciens

Prospectives d'analyse

CMS,

Poursuivre les analyses actuelles au grand potentiel avec plus de statistique.

Données PbPb 2011 et au-delà :

- ALICE : charme
- CMS : beauté

 Mesures de perte d'énergie différentielles : jet shapes, jet R_{AA}, etc.
1^{ères} mesures de jets identifiés : γ-jet, b tagged jets (CMS), événements à 3 jets.

❑ 2012 pPb : Sections efficaces Jet et Photon
→ sensibles au nPDF des gluons

Après premier shutdown : collisions symétriques d'ions plus légers.

Un événement Z+jet en PbPb

let E_T = 54 GeV/c

□ <u>Au-delà pour CMS</u> : large acceptance et large bande passante, des spécificités adaptées à l'augmentation de luminosité.

 \succ grande statistique γ +jet, b-jets, première mesure de Z+jet.

□ <u>Au-delà pour ALICE</u> : upgrades de l'ITS et du calorimètre nécessaires

ME - Prospectives Ions lourds (III) - Giens, 02/04/2012

Les projets d'upgrades français

□ Face à l'augmentation en luminosité au LHC :

Adaptée aux mesures de grande multiplicité et PID, upgrade du read-out des détecteurs principaux d'ALICE et de la DAQ Vers des études de processus rares où ALICE est unique :

- Upgrade de l'ITS (upgrade global partie centrale)
- Upgrade du calorimètre

Exploration diagramme des phases haute densité baryonique

Projet d'upgrade du trajectographe interne d'ALICE : ITS

Un projet acté par la collaboration ALICE

Hadrons charmés et beaux et très bas p_T Perte d'énergie, hadronisation et thermalisation

1 laboratoire, 5 physiciens, 2 M€

Projet d'upgrade de l'ITS : saveurs lourdes ouvertes

Dépendance en masse et en saveur de la perte d'énergie :

- distributions en p_T et R_{AA} des mésons D et B séparément,
- mesure de la beauté via vertex déplacés $B \rightarrow J/\Psi \rightarrow ee, B \rightarrow D^0 \rightarrow K\pi$
- premières mesures de charme à $p_T \rightarrow 0$,
- Etat initial, thermalisation et hadronisation :
 - flow elliptique du charme et de la beauté à très bas p_T,
 - mesures baryons charmés et beaux $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c}$ +X en PbPb,
 - rapport baryon/méson
- Tracking autonome : trigger topologique qui exploite le PID !

• Sélection d'événements corrélés en azimut de particules identifiées e-D, e-B

Exigences pour le nouvel ITS:

Amélioration de: efficacité de tracking, résolution en p_T , résolution sur le paramètre d'impact (mesure des saveurs lourdes à bas p_T), reconstruction du vertex primaire, capacités de trigger ...

Augmentation de luminosité: temps de lecture (de 0 jusqu'à 50kHz), tolérance aux radiations ionisantes et non ionisantes

Les ingrédients de l'upgrade de l'ITS

 \Box cτ du Λ_c ~ 60 µm < résolution sur le paramètre d'impact de l'ITS actuel \Box Solutions pour améliorer la résolution sur le dca des traces chargées :

- > introduction de couches de pixels plus proches possible de l'axe du faisceau
- \rightarrow upgrade du beam pipe \rightarrow couche la plus interne de l'ITS plus proche du point d'impact

➢ pixels plus petits, budget de matière réduit (0.3% X0) → meilleure résolution en position et impulsion

Solutions:

Deux configurations (pixels/strips) à l'étude:

1) 7 couches de Si-pixels (4 x 4 $\mu m^2)$

- 2) 3 couches de Si-pixels (4 x 4 μ m²) les plus internes
- + 4 couches de Si-strips (20 x 830 μ m²) externes

Différents types de pixels à l'étude:

- 1) Pixels hybrides
- 2) Pixels monolythiques
- « Monolithic Active Pixel Sensors (MAPS) » CMOS

La bonne technologie à la bonne place! (fonction des conditions de taux de radiations, résolution, vitesse de lecture et surface (prix))

- Pixels CMOS minces (50 $\mu m)$ en technologie 0.18 μm
- Résolution spatiale = 4 µm dans les 2 dimensions
- Temps de lecture < 7 μs
- Tolérance aux radiations de qq MRad et > 2 x $10^{13}n_{eq}/cm^2$

Résolution sur le « pointing angle » : $100x200\mu m^2 \rightarrow 40x40 \ \mu m^2$

Une des technologies MAPS proposée par l'IPHC à ALICE Collaboration groupes ALICE et PICSEL de l'IPHC 2 à 3 ans de R&D puis production (2015-16), installation et commissioning d'ici 2018

ME - Prospectives Ions lourds (III) - Giens, 02/04/2012

Mésons D à bas p_T et baryons charmés

Mésons $D^0 \rightarrow K^- \pi^+$: **Baryon** $\Lambda_c \rightarrow p K^- \pi^+$: \Box 2 < p_T < 4 GeV/c : Amélioration significative \Box Données réelles pp !, p_T > 3 GeV/c ! ₩ 400 $\Lambda_c \rightarrow pK^{-}\pi^+$ ^Λ° > 3 GeV/c 450 Significance (3 σ) 3.6 ± 1.0 PbPb√s_{NN}=2.76 TeV S/B~1/10 400 S (3o) 153 ± 44 2 3.0×10⁴ events in centrality 0-20% B (3σ) 1626 ± 22 350 $2.0 < p_{\star}^{D^0} < 4.0 \text{ GeV/c}$ Sig = 3.6- charm enriched -300 250 Mean = 2.288235 ± 0.001280 S/B~1/10 pp√s = 7 TeV, 1.9x10^e events 200 Sigma = 0.005797 ± 0.001271 200 Sig = 5150 Significance (3 σ) 5.1 ± 1.2 150 Significance (3 σ) 9.9 ± 1.1 — Current ITS S (3o) 207 ± 21 AllNew configuration 100E S (3σ) 292 ± 69 100 ALICE performance B (3σ) 231±8 $(X/X_{a}=0.3\%, \sigma_{rAz}=4 \mu m)$ 50 S/B~1 B (3σ) 3002±19 12/05/2011 50 2.26 2.24 2.28 2.3 2.32 2.34 1.85 Invariant Mass pKπ (GeV/c²) 1 75 1.8 1.9 1.95 Sig = 10Invariant Mass (K π) [GeV/c²]

□ 0 < p_T < 2 GeV/c : non accessible ITS actuel

ALICE

Projets d'upgrade du calorimètre d'ALICE

Un projet en cours de discussion dans ALICE

Corrélations, PID dans les jets, interactions soft/hard Perte d'énergie, hadronisation

2 laboratoires, 9 physiciens, 0.5 M€ (0.8 M€, personnel)

Un calorimètre récent dans ALICE

❑ Non conçu à l'origine pour les jets, ALICE s'équipe en conséquence depuis 2010 :

- 2005, premier « upgrade » : un calorimètre (EMCal) acté
- EMCal en 3 étapes : 2010 = 4 SuperModules (SM), 2011 = 10SM, 2012 = 10+2/3 de SM ALICE
- 2010, première extension actée : projet DCal pour les corrélations back-to-back.

Jalons en 2 phases à venir dans le projet d'upgrade du calorimètre

- 1) Au prochain long shutdown de 2013-2014 : installation de DCal et son extension.
 - \Rightarrow Consolidation française humaine mais pas financière
- 2) Au deuxième long shutdown de 2018 : projet d'upgrade du calorimètre
 - \Rightarrow Souhait d'implications françaises financière et humaine

3 points de physique à l'étude :

1) Gerbe partonique : Dans le vide (pQCD) et dans le milieu (perte d'énergie). Interactions douces et dures dans le milieu dense ⇒ Mesures de précision, corrélations jets 2) Fragmentation : Pas bien comprise, ni contrainte Composition hadrochimique des jets modifiée ⇒ PID dans les jets

3) Etat initial et PDF :

 Physique à petit x, |η|>3 en pA et AA, photon/pion discrémination Simulations en cours...

Les projets d'upgrade envisagés

Comment ?

- Trois projets potentiels autour d'une constance dans ALICE :
 - Exploitation région de mi-rapidité (excellent tracking et PID, contrôle de l'UE)
 - Très bien positionné dans la région des bas p_T pour caractériser la structure des jets
 - Interaction soft medium / hard processes (Terra incognita)

Un choix parmi :

DCal-VHMPID

Techno : Couplage EMCal + cerenkov **But** : mesure du PID dans les jets à grands p_T

FoCal

Techno : Calorimètre vers l'avant (capteur CMOS = 1 option technologique) **But** : accès aux petits-x et mesure des PDFs

FullCal-phi Techno : calorimètre à échantillonnage de type schashlik

But : Extension en phi pour mesures de précision, jet et corrélations

ME - Prospectives Ions lourds (III) - Giens, 02/04/2012

L'expérience CBM à FAIR

Un projet complémentaire au LHC :

Charmonium, charme ouvert et mésons vecteurs Transition de phase, équation d'état à grand $\rho_{\rm B}$

1 laboratoire, 2 physiciens, 0.3 M€

Expérience CBM : sonder transition et point critique

CBM : Compressed Baryonic Matter experiment

→ Une des expériences majeures de FAIR
→ FAIR (GSI-Darmstadt) : en cours de construction,
démarrage en 2018

Coll. Internationale : 400 membres, 15 pays
IPHC (équipe PICSEL) est impliqué dans le détecteur de vertex (MVD)

- Développement de capteurs à pixels CMOS (CPS) adaptés au MVD
- Synergie entre différents projets (ALICE-

Exploration diagramme de phases, région de hautes densités baryoniques nettes

- Point critique et au delà
- Restauration de la symétrie chirale
- > Equation d'état à haute densité baryonique

Quelles observables, comment ?

> Sondes rares sensibles aux effets de haut ρ_B et à la transition : charmonium, charme ouvert, mésons vecteurs légers en pp et AA de 2 à 45 AGeV ($\sqrt{s_{NN}}$ < 10 GeV)

Faisceaux d'IL de haute intensité, disponibles plusieurs mois/an

Détecteurs de nouvelle génération : très rapides, radio-résistants

Première phase du projet

- ≻ 2012 2015 : R&D
- \rightarrow Durée de lecture des capteurs (x3)
- \rightarrow Tolérance aux radiations (x7)
- 2016 2018 : Construction du détecteur
- > 2018 : Prises de données

Conclusion

- □ Très forte augmentation de la section efficace dure au LHC
- □ Sondes privilégiées :
 - Saveurs lourdes
 - Photons et jets
- D'ores et déjà de nombreux résultats remarquables de physique au LHC
- CMS : pas d'upgrade, prospectives d'analyse de physique jusqu'en 2022

Projets d'upgrade en France :

> ALICE-ITS :

- Acté par ALICE (upgrade global) pour mésons/baryons lourds et mesure de très bas p_T
- 1 laboratoire, 5 physiciens, 2 M€

> ALICE-EMCal :

- Projet plus récent en cours de discussion dans la collaboration essentiel pour le PID dans les jets et les interactions jets/milieu.
- 2 laboratoires, 9 physiciens, 0.5 M€

⇒ Une complémentarité certaine entre les deux upgrades à exploiter à l'avenir

> CBM-MVD :

- \bullet Autour du diagramme des phases à grand ρ_{B}
- 1 laboratoire, 2 physiciens, 0.3 M €