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Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

• Matter : quarks ; Interaction carriers : gluons

a

i

j

∼ g (ta
)ij

a

b

c

∼ g (T a
)bc

• i , j : quark colors ; a,b, c : gluon colors

• (ta)ij : 3 × 3 SU(3) matrix ; (T a)bc : 8 × 8 SU(3) matrix

Lagrangian

L = −
1
4

F 2 +
∑

f

ψf (i/D − mf )ψf

• Free parameters : quark masses mf , scale ΛQCD (or αs(Mz))
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Color confinement

• Lattice evidence : linear rise of the QQ potential
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Color confinement

• In nature, we do not see free quarks and gluons (the
closest we have to actual quarks and gluons are jets)

• Instead, we see hadrons (quark-gluon bound states):

• The hadron spectrum is uniquely given by ΛQCD,mf

• But this dependence is non-perturbative (it can now be
obtained fairly accurately by lattice simulations)
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Debye screening

What happens when many hadrons
are packed in a small volume?

V(r) = 
exp( - r / rdebye )

r
r

• In a dense medium, color charges are screened by their
neighbors

• The interaction potential decreases exponentially beyond
the Debye radius rdebye

• Hadrons whose radius is larger than rdebye cannot bind
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Debye screening
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• In lattice calculations, one sees the QQ potential flatten at
long distance as T increases
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Deconfinement transition
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• Rapid increase of the pressure :

• at T ∼ 270 MeV, with gluons only

• at T ∼ 150 to 180 MeV, with light quarks

⊲ interpreted as the increase in the number of degrees of
freedom due to the liberation of quarks and gluons
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QCD phase diagram
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Heavy ion collisions
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Stages of a nucleus-nucleus collision
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Stages of a nucleus-nucleus collision

What would we like to learn?

i. Thermalization? to what degree? initial T ?

ii. Do heavy hadrons survive in the QGP?

iii. Transport properties of deconfined matter

iv. Hadronization mechanisms

v. Existence and location of a 2nd order critical point



François Gelis

Introduction

Thermalization

Heavy states

Transport

Hadronization

Critical point

11

Is the QGP in equilibrium?

Why is it important?

• If the QGP is not in equilibrium, then it remembers many
details about the initial condition =⇒ what we measure is
not a simple property of the QGP

• Theory predictions are much easier in equilibrium (lattice
QCD works ONLY in equilibrium)

• Hydrodynamics is applicable only to systems close
enough to equilibrium

Questions

• At what time is the system thermalized?

• What is its temperature at that time?

Probes

• Indirect evidence from hydrodynamical models

• Thermal direct photons
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Do heavy states survive?

Large hadrons melt, while the small ones should survive

• Bound state sizes decrease as their mass increase

• Excited states are larger than ground states

=⇒ Melting order: light mesons, χc , ψ′, J/ψ, Υ′′, Υ′, Υ

Probes

• Quarkonia yields, up to the upsilon family

• Open heavy flavors would help disentangle various models

• Reference yields in proton-proton and proton-nucleus
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Transport properties (I)

• The viscosity η tells us how good a fluid the QGP is
(small viscosity = better fluid)

What do the theorists expect?

αs

η / s

1 / 4π

strong coupling
(in conformal theories)

weak
coupling

What we would like to learn from flow measurements

• How small is it really?

• So far, only a gross average value: can we get the
viscosity at several stages of the evolution?

• Do heavier partons (c and b quarks) flow?
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Transport properties (II)

How are parton cascades modified in a dense medium?

• Are jets completely absorbed?

• What fraction of hadrons manage to get out?

• Modifications of angular correlations

• Modifications of jet fragmentation functions

• Mass dependence: do heavy quarks also lose energy?
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Hadronization mechanism

Hadronization by fragmentation (dominant in vacuum)

• V (Q,Q) increases
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Hadronization mechanism

Hadronization by fragmentation (dominant in vacuum)

• V (Q,Q) increases

• At some point, there is
enough energy to extract a
new qq̄ pair from the vacuum
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Hadronization mechanism

Hadronization by fragmentation (dominant in vacuum)

• V (Q,Q) increases

• At some point, there is
enough energy to extract a
new qq̄ pair from the vacuum

• This process repeats, and
hadrons are formed at the
end of the cascade
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Hadronization mechanism

Hadronization by fragmentation (dominant in vacuum)

• V (Q,Q) increases

• At some point, there is
enough energy to extract a
new qq̄ pair from the vacuum

• This process repeats, and
hadrons are formed at the
end of the cascade

Hadronization by coalescence

• Nearby partons in the QGP
bind together

• Larger yield of baryons

• More strange hadrons if
T & 2ms
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Critical point
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Critical point

• At zero density: crossover (known from lattice QCD)

• At high density: first order transition line?

• If true, there should be a 2nd order critical endpoint

• How do we get there? collisions at lower energy

• What do we look for? unusually large fluctuations
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Outlook

Projects (see J. Castillo and M. Estienne presentations)

• ALICE upgrades: Inner tracking, Calorimetry,
Muon forward tracking, Vzero

• CBM experiment at FAIR (GSI, Germany)

• CHIC, AFTER
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