

Experimental Aspects of Deep-Inelastic Scattering

Kinematics, Techniques and Detectors

Institute of Technology

Outline

DIS Kinematics

DIS process description

- O Dirac Cross-Section
- O Mott Cross-Section
- O Rutherford Cross-Section
- O DIS Cross-Section

DIS Introduction

DIS Structure Function
 Measurements

DIS Collider Detectors

Summary andOutlook

DIS Introduction

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

Bernd Surrow

G Fixed-target experiment: Endstation A at Stanford Linear Accelerator Center (SLAC)

DIS Introduction

Collider experiment: Electron-Proton collisions at HERA (DESY, Hamburg, Germany)

Equivalent to fixed target of $E_e = 50600 \text{ GeV}$:

Elektron

DIS Introduction

DIS major event classes

Neutrino

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

Proton

DIS Introduction

Diffractive events

 Dipole models: Successful description of inclusive and various diffractive measurements (e.g. Ratio of diffractive to inclusive cross-section, Diffractive Vector-Meson production)

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

 $\propto \alpha_s^2 \left[g(x,Q^2)\right]^2$

Bernd Surrow

Dirac Cross-Section (Electron-Mass M (Spin 1/2) Particle scattering)

 ${\ensuremath{ \circ }}$ Recoil: E' is kinematically determined by E and θ

$$E' = \frac{E}{1 + (2E/Mc^2)\sin^2(\theta/2)}$$
$$M \to \infty \quad E' = E$$

• Scattering process: $2 \rightarrow 2$

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{\hbar E'}{8\pi M c E}\right)^2 \langle |\mathcal{M}|^2 \rangle$$

Dirac Cross-Section:

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix} = \frac{\alpha^2 \hbar^2 c^2}{4E^2 \sin^4(\theta/2)} \begin{pmatrix} \frac{E'}{E} \end{pmatrix} \begin{cases} \cos^2\left(\frac{\theta}{2}\right) - \frac{q^2}{2M^2 c^2} \sin^2\left(\frac{\theta}{2}\right) \end{cases}$$
Impact of electron-spin Impact of target-spin (mass M)

Mott Cross-Section (Electron-Heavy Mass M (Spin 1/2) Particle scattering)

• Mott condition: Electron scatters off a much heavier spin 1/2 particle of mass

$$\begin{array}{c} \mathsf{M} \gg \mathsf{m} \\ & & & \\ \hline p_1 \end{array} \end{array} \begin{array}{c} p_3 \\ \hline p_1 | = |\vec{p}_3| = |\vec{p}| \\ p_1 | = |\vec{p}_3| = |\vec{p}| \\ p_1 = \left(\frac{E}{c}, \vec{p}_1\right) \end{array} \begin{array}{c} p_2 = \left(Mc, \vec{0}\right) \end{array} \begin{array}{c} \hline p_3 = \left(\frac{E}{c}, \vec{p}_3\right) \\ p_3 = \left(\frac{E}{c}, \vec{p}_3\right) \end{array} \begin{array}{c} p_4 = \left(Mc, \vec{0}\right) \end{array}$$

• Calculate four-vector combinations:

$$Q^{2} = -q^{2} = -(p_{1} - p_{3})^{2} = 4\vec{p}^{2}\sin^{2}\frac{\theta}{2}$$
$$(p_{1} \cdot p_{3}) = m^{2}c^{2} + 2\vec{p}^{2}\sin^{2}\frac{\theta}{2}$$
$$(p_{1} \cdot p_{2})(p_{3} \cdot p_{4}) = (p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) = (ME)^{2}$$
$$(p_{2} \cdot p_{4}) = (Mc)^{2}$$

$$\begin{split} \langle |\mathcal{M}|^2 \rangle &= \frac{8g_e^4}{(p_1 - p_3)^4} \times \\ [(p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) - \\ (p_1 \cdot p_3)(Mc)^2 - (p_2 \cdot p_4)(mc)^2 + \\ 2(mMc^2)^2] \end{split}$$

Summary

• Re-write Dirac cross-section using the Mott cross-section

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{\alpha^2 \hbar^2 c^2}{4E^2 \sin^4(\theta/2)} \left(\frac{E'}{E}\right) \left\{\cos^2\left(\frac{\theta}{2}\right) - \frac{q^2}{2M^2 c^2} \sin^2\left(\frac{\theta}{2}\right)\right\}$$

with: $q^2 = -4(E/c)(E'/c) \sin^2(\theta/2)$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Dirac} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(\frac{E'}{E}\right) \left\{1 - \frac{q^2}{2M^2c^2} \tan^2\left(\frac{\theta}{2}\right)\right\}$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{Dirac} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cos^2(\theta/2) \left(\frac{E'}{E}\right) \left\{1 - \frac{q^2}{2M^2c^2} \tan^2\left(\frac{\theta}{2}\right)\right\}$$

Note:

- \circ This is the result we would obtain if the proton would be a Dirac particle: M=m_p
- Modifications to Rutherford cross-section: Relativistic effects (SPIN effects: Probe and Target

(Negligible for very heavy target)!

Elastic ep scattering (1)

• Recall:

 $\langle |\mathcal{M}|^2 \rangle = \frac{(4\pi\alpha)^2}{q^4} L_{\text{electron}}^{\mu\nu} L_{\mu\nu,\text{Dirac particle M}}$

Feynman graph:

Note: The proton cannot be just a Dirac particle (g=2)!

Dirac-particle tensor

Therefore: ep scattering Leptonic tensor p_3 p_1 p_1 EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010 We do not know exactly how this tensor looks like, but: $\langle |\mathcal{M}|^2 \rangle = \frac{(4\pi\alpha)^2}{q^4} L_{electron}^{\mu\nu} K_{\mu\nu, proton}$ Hadronic tensor Bend Surrow

11

Elastic ep scattering (2)

• High-energy limit:

$$\langle |\mathcal{M}|^2 \rangle = \left(\frac{(4\pi\alpha c)^2}{4EE'\sin^4(\theta/2)}\right) \left\{ 2K_1 \sin^2\left(\frac{\theta}{2}\right) + K_2 \cos^2\left(\frac{\theta}{2}\right) \right\}$$

DIS Process Description

13

Elastic ep scattering (3)

$$\frac{K_2}{4M^2} = \frac{G_E^2 + \tau G_M^2}{1 + \tau} \qquad \frac{2K_1}{4M^2} = 2\tau G_M^2 \qquad \tau = -q^2/4M^2$$

Summary Rosenbluth formula

Note: For heavy target: Contribution from G^2_{M} term negligible:

$$\tau = -q^2/4M^2 \to 0$$

For $G_{M}^{2} = 1$ and $G_{E}^{2} = 1$ this reduces to the well-known Dirac particle case::

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{\alpha^2}{4E^2 \sin^4(\theta/2)} \frac{E'}{E} \cos^2\left(\frac{\theta}{2}\right) \left(1 + 2\tau \tan^2\left(\frac{\theta}{2}\right)\right)$$

14

Elastic ep scattering (4)

 Scattering of electron (Spin 1/2) on pointcharge charge (Spin 0): Mott cross-section

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott}^{*} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^{2}(\theta/2)$$

Take into account finite charge distribution:
 Form factor

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)^*_{Mott} \cdot \left|F(q^2)\right|^2$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)^*_{Mott} \frac{E'}{E}$$

Bernd Surrow

15

Elastic ep scattering (5)

• Scattering of electron (Spin 1/2) on proton (Spin 1/2)

Inelastic ep scattering (1)

• Simplify this: Massless electron (m=0) of energy E strikes a stationary proton of mass M:

$$\begin{split} \sqrt{(p_1 \cdot p_2) - (m_1 m_2 c^2)^2} &= ME \\ |\vec{p}_3| &= E'/c \\ d^3 \vec{p}_3 &= |\vec{p}_3|^2 d |\vec{p}_3| d\Omega \\ E' &= E_3 \\ & \underbrace{\left(\frac{d\sigma}{dE' d\Omega}\right) = \left(\frac{\alpha \hbar}{cq^2}\right)^2 \left(\frac{E'}{E}\right) L^{\mu\nu} W_{\mu\nu}}_{\text{Leptonic tensor}} \\ & \text{Hadronic tensor} \end{split}$$

O Note:

- \bullet E' is no longer kinematically determined by E and θ
- The total hadronic momentum can vary and is no longer constrained, i.e.:

$$p_{tot}^2 \neq M^2 c^2$$

16

Inelastic ep-scattering (2)

- 0 Goal: Measure differential cross section in a particular energy range dE'
- Leptonic tensor: $L_{\text{electron}}^{\mu\nu} = 2\{p_1^{\mu}p_3^{\nu} + p_1^{\nu}p_3^{\mu} + g^{\mu\nu}[(mc)^2 (p_1 \cdot p_3)]\}$ 0
- Ansatz for hadronic tensor: $W_{\mu\nu,\,\text{proton}} = -W_1 g_{\mu\nu} + \frac{W_2}{(Mc)^2} p_\mu p_\nu + \frac{W_4}{(Mc)^2} q_\mu q_\nu + \frac{W_5}{(Mc)^2} (p_\mu q_\nu + p_\nu q_\mu)$ 0

With $q_{\mu}W^{\mu\nu}=0$ 0

• We get:
$$W_4 = \frac{(Mc)^2}{q^2}W_1 + \left(\frac{p \cdot q}{q^2}\right)^2 W_2$$
 $W_5 = -\frac{q \cdot p}{q^2}W_2$

• Therefore:
$$W_{\mu\nu,\,\text{proton}} = W_1 \left(-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2} \right) + \frac{W_2}{(Mc)^2} \left[p_\mu + \left(\frac{q \cdot p}{q^2} \right) q_\mu \right] \left[p_\nu + \left(\frac{q \cdot p}{q^2} \right) q_\nu \right]$$

0 Contraction with leptonic tensor yields:

 $\left(\frac{d^2\sigma}{dE'd\Omega}\right) = \frac{(\alpha\hbar)^2}{4E^2\sin^4(\theta/2)} \left(W_2\cos^2\left(\frac{\theta}{2}\right) + 2W_1\sin^2\left(\frac{\theta}{2}\right)\right)$ $Q^2 = -q^2$ } Negative four-momentum transfer squared! • W_1 and W_2 are functions of q^2 and $q \cdot p$ $x \equiv \frac{Q^2}{2q \cdot p}$

• G_F and G_M are functions of q^2 only!

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

0

Note:

Bernd Surrow

Bjorken scaling variable

17

DIS Process Description

Friedman, Kendall and Taylor00

Bernd Surrow

DIS Process Description

Summary

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^2(\theta/2) \qquad \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{4\alpha^2 {E'}^2}{q^4}$$

General considerations

$$e(k) + P(p) \to l(k') + X(p')$$

• Four vectors:
$$k, p, k', p'$$

- Neutral current exchange (NC): γ^*, Z^0
- Charged current exchange (CC): W^{\pm}
- Measurement of structure functions:
 - O NC: Scattered electron and/or hadronic final state
 - CC: Hadronic final state (neutrino escapes detection)

Determine kinematics!

Kinematic variables (1)

O Mandelstam variables:

0 s,t,u

O Centre-of-mass energy: \sqrt{s}

$$s = (k+p)^2 \simeq 4E_e E_P$$

$$t = (p-p')^2$$

$$u = (k'-p)^2$$

$$Q^{2} = -(k - k')^{2} = -(p - p')^{2} = -t = -q^{2}$$

O Q²

• Negative square of the momentum transfer q

O Determines wavelength of photon and therefore the size Δ which can be resolved

O Q
$$^2_{\max}$$
 = s $x = -\frac{Q^2}{2(p \cdot q)} \simeq -\frac{t}{u+s} \quad 0 \leq x \leq s$

0 x

0

• Bjorken scaling variable: Fraction of the proton momentum carried by the struck parton (Quark-Parton model)!

'≃' …refers to the case where masses are ignored!

- W²
 - O Invariant mass squared of the hadronic final state system
 - O Small x refers to large W^2

$$W^{2} = (p+q)^{2} = (p')^{2} = m_{p}^{2} + \frac{Q^{2}}{x}(1-x) \simeq s+t+u$$

C Kinematic variables (2)

$$\nu = \frac{p \cdot q}{m_p}$$

$$\nu = \frac{p \cdot q}{m_p} = \frac{m_p(E_e - E'_e)}{m_p} = (E_e - E'_e)$$

Оу

0

ν

• Fraction of the incoming electron carried by the exchanged gauge boson also known as inelasticity in the proton rest

$$y = \frac{p \cdot q}{p \cdot k} \simeq \frac{u + s}{s} \qquad 0 \le y \le 1$$

O †

O Momentum transfer at the hadronic vertex

$$t = (p - p')^2$$

• Note the above variables are connected by:

$$Q^2 \simeq s \cdot x \cdot y$$

- For fixed x and y, ep collider allows to reach much large values in Q2
- For fixed y and Q2, ep collider allows to reach much smaller values in x

$$k = \begin{pmatrix} E_e \\ 0 \\ 0 \\ -E_e \end{pmatrix} p = \begin{pmatrix} E_P \\ 0 \\ 0 \\ E_P \end{pmatrix}$$

$$k' = \begin{pmatrix} E'_e \sin \theta'_e \cos \phi'_e \\ E'_e \sin \theta'_e \sin \phi'_e \\ E'_e \cos \theta'_e \end{pmatrix} p' = \begin{pmatrix} \sum_h E_h \\ \sum_h p_{X,h} \\ \sum_h p_{Y,h} \\ h p_{Z,h} \end{pmatrix}$$

$$\mathbf{x}_e = \frac{Q_e^2}{sy_e} = \frac{E'_e \cos^2 \frac{\theta'_e}{2}}{E_p(1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta'_e}{2})}$$

$$\mathbf{y}_e = 1 - \frac{E'_e}{2E_e}(1 - \cos \theta'_e) = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta'_e}{2}$$

$$Q_e^2 = 2E_e E'_e(1 + \cos \theta'_e) = 4E_e E'_e \cos^2 \frac{\theta'_e}{2} = \frac{p_{T,e}^2}{1 - y_e}$$

- Collider kinematics (2)
 - Electron method: scattered electron

$$x_e = \frac{Q_e^2}{sy_e} = \frac{E'_e \cos^2\left(\frac{\theta'_e}{2}\right)}{E_p \left(1 - \frac{E'_e}{E_e} \sin^2\left(\frac{\theta'_e}{2}\right)\right)}$$

• Jacquet-Blondel method: hadronic final state

$$y_{e} = 1 - \frac{E'_{e}}{2E_{e}} (1 - \cos \theta'_{e}) = 1 - \frac{E'_{e}}{E_{e}} \sin^{2} \left(\frac{\theta'_{e}}{2}\right) \qquad x_{JB} = \frac{Q_{JB}^{2}}{sy_{JB}}$$

$$p_{T,h}^{2} = \left(\sum_{h} p_{x,h}\right)^{2} + \left(\sum_{h} p_{y,h}\right)^{2}$$

$$Q_{e}^{2} = 2E_{e}E'_{e} (1 + \cos \theta'_{e}) = 4E_{e}E'_{e} \cos^{2} \left(\frac{\theta'_{e}}{2}\right) = \frac{p_{T,e}^{2}}{1 - y_{e}} \qquad y_{JB} = \frac{(E - p_{z})_{h}}{2E_{e}} \qquad (E - p_{z})_{h} = \sum_{h} (E_{h} - p_{z,h})$$

$$Q_{JB}^{2} = \frac{p_{T,h}^{2}}{1 - y_{JB}} \qquad (E - p_{z})_{h} = \sum_{h} (E_{h} - p_{z,h})$$

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010 25

Collider kinematics (4)

• Low-x-low Q²: Electron and current jet (low energy) predominantly in rear direction

High-x-low Q²:
 Electron in rear and
 current jet (High
 energy) in forward
 direction

• High-x-high Q^2 : Electron predominantly in barrel/forward direction (High energy) and current jet in forward direction (High energy) $Q^2 = 361 GeV^2$ x = 0.45 $E'_e = 18 GeV$ F = 104 GeV $\vartheta'_e = 90^\circ \quad \vartheta_h = 10^\circ$

11.

Collider kinematics (5)

• Electron method: scattered electron

$$\left(\frac{\delta x_e}{x_e}\right) = \left(\frac{1}{y_e}\right) \frac{\delta E'_e}{E'_e} \otimes \left[\frac{x_e}{E_e/E_p} - 1\right] \tan\left(\frac{\theta'_e}{2}\right) \delta \theta'_e$$

$$\left(\frac{\delta y_e}{y_e}\right) = \left(1 - \frac{1}{y_e}\right) \frac{\delta E'_e}{E'_e} \otimes \left[\frac{1}{y_e} - 1\right] \cot\left(\frac{\theta'_e}{2}\right) \delta \theta'_e$$

$$F = \frac{p_{T,h}^2 + (E - p_z)_h^2}{2(E - p_z)_h}$$

$$rac{\gamma}{E_p} \quad \cot \gamma = \frac{p_{T,h}^2 - (E - p_z)_h^2}{p_{T,h}^2 + (E - p_z)_h^2}$$

E_'

 $\left(\frac{\delta Q_e^2}{Q_e^2}\right) = \frac{\delta E_e'}{E_e'} \otimes \tan\left(\frac{\theta_e'}{2}\right) \delta \theta_e'$

• Jacquet-Blondel method: hadronic final state

F

$$\left(\frac{\delta x_{JB}}{x_{JB}}\right) = \left(\frac{1}{1 - y_{JB}}\right)\frac{\delta F}{F} \otimes \left[2\cot\gamma + \left(\frac{2y_{JB} - 1}{1 - y_{JB}}\right)\cot\left(\frac{\gamma}{2}\right)\right]\delta\gamma$$

$$\left(rac{\delta y_{JB}}{y_{JB}}
ight) = rac{\delta F}{F} \otimes \cot\left(rac{\gamma}{2}
ight) \delta \gamma$$

$$\left(\frac{\delta Q_{JB}^2}{Q_{JB}^2}\right) = \left(\frac{2 - y_{JB}}{1 - y_{JB}}\right) \frac{\delta F}{F} \otimes \left[2\cot\gamma + \left(\frac{y_{JB}}{1 - y_{JB}}\right)\cot\left(\frac{\gamma}{2}\right)\right]\delta\gamma$$

- Relativistic Invariant Cross-Section
 - In terms of laboratory variables:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^2(\theta/2)$$

$$\left(\frac{d^2\sigma}{dE'd\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left\{ W_2(Q^2, x) + 2W_1(Q^2, x)\tan^2\left(\frac{\theta}{2}\right) \right\} \quad \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{4\alpha^2 {E'}^2}{q^4}$$

• Formulate this now in relativistic invariant quantities:

$$\theta'_e, E'_e \to y_e, Q^2_e$$

• Instead of W_1 and W_2 , use: F_1 and F_2 :

$$F_{1} = m_{p}W_{1} \qquad F_{2} = \nu W_{2} \qquad \text{Longitudinal structure}$$

$$\left(\frac{d^{2}\sigma}{dydQ^{2}}\right) = \frac{2\pi\alpha^{2}Y_{+}}{yQ^{4}}\left(F_{2} - \frac{y^{2}}{Y_{+}}F_{L}\right) \qquad F_{L} = F_{2} - 2xF_{1}$$

$$Y_+ = 1 + (1 - y)^2$$

DIS Structure Function Measurements

Essential idea

 Determination of kinematics (e.g. electron method):

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

Bernd Surrow

DIS Structure Function Measurements

Discovery of asymptotic freedom in the theory of strong interaction (Quantum Chromo Dynamics): Nobel prize in physics

2004

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

Bernd Surrow

ep detector system: Here ZEUS Detector

Central-Tracking detector:

 $\frac{\delta p_T}{p_T} = 0.0059 \, p_T \, \otimes \, 0.0065$

- \Rightarrow Inside superconducting solenoid of 1.43T
- Uranium calorimeter (barrel, rear and forward sections):
 - electromagnetic part:

$$\frac{\delta E}{E} = \frac{18\%}{\sqrt{E}}$$

- hadronic part:

$$\frac{\delta E}{E} = \frac{35\%}{\sqrt{E}}$$

• Muon detection system in barrel, rear and forward direction

ZEUS detector - Kinematic variable measurement

EIC Collaboration Meeting at SUNY Stony Brook Stony Brook, NY, January 10, 2010

Bernd Surrow

- Connection of DIS cross-section and Dirac / Mott / Rutherford cross-sections
- Collider kinematics: Reconstruction of kinematics through electron or hadron method or combination of both

Literature:

Review on ep physics: Bernd Surrow, Eur. Phys. J. direct C1:2, 1999.

Textbook on DIS: Robin Devenish and Amanda Cooper-Sarkar - Deep Inelastic Scattering

Basic aspects of scattering theory (1)

• Scattering process:
$$a_1(p_1) + \ldots + a_n(p_n) \rightarrow b_1(p'_1) + \ldots + b'_m(p'_m)$$

• Initial state:
$$\lim_{t \to -\infty} |t\rangle = |i\rangle = |a_1(p_1) + \ldots + a_n(p_n)\rangle$$

• Final state:
$$\lim_{t \to +\infty} |t\rangle = |f\rangle = |b_1(p_1') + \ldots + b_m'(p_m')\rangle$$

• Scattering amplitude: $S_{fi} = \langle b_1(p'_1) + \ldots + b'_m(p'_m) | S | a_1(p_1) + \ldots + a_n(p_n) \rangle$

$$\sum_{f} |\langle f|S|i\rangle|^{2} = \sum_{f} \langle i|S^{\dagger}|f\rangle \langle f|S|i\rangle = \langle i|S^{\dagger}S|i\rangle = 1$$

34

Basic aspects of scattering theory (2)

Note:

S

 $p_i = (E_i/c, \vec{p_i})$ Four-momentum of the ith particle

Statistical factor: 1/j! for each group of j identical particles in the final state

- Basic aspects of scattering theory (3)
 - Amplitude: Electron-Mass M (Spin 1/2) Particle scattering: Dirac scattering

$$\langle |\mathcal{M}|^2 \rangle = \frac{8g_e^4}{(p_1 - p_3)^4} \times [(p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) - (p_1 \cdot p_3)(Mc)^2 - (p_2 \cdot p_4)(mc)^2 + 2(mMc^2)^2]$$

Momentum transfer: $q=\left(p_{1}-p_{3}
ight)$

• Approximation:

- ${\rm O}\,$ Laboratory frame with the target particle of mass M at rest
- O Electron with energy E scatters at an angle emerging with energy E'
- O Assumption: E,E' >> mc² (m=0)

• Spin averaged amplitude:

$$\langle |\mathcal{M}|^2 \rangle = \frac{(4\pi)^2 \alpha^2 c^2 (2Mc)^2}{4EE' \sin^4(\theta/2)} \left\{ \cos^2\left(\frac{\theta}{2}\right) - \frac{q^2}{2M^2 c^2} \sin^2\left(\frac{\theta}{2}\right) \right\}$$

O Cross-section result:

 $\langle |\mathcal{M}|^2 \rangle = \left(\frac{g_e^2 M c}{\vec{p}^2 \sin^2(\theta/2)}\right)^2 \left((mc)^2 + \vec{p}^2 \cos^2\frac{\theta}{2}\right)_{\mathbb{N}}$

 $\frac{d\sigma}{d\Omega} = \left(\frac{\hbar}{8\pi Mc}\right)^2 \langle |\mathcal{M}|^2 \rangle \leftarrow$

Impact of target spin for very heavy target drops out: Mott cross section: Scattering of spin 1/2 particle on heavy spin 0 heavy target

> Spin-averaged matrix element squared and cross-section for: M >> m

$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha\hbar}{2\vec{p}^2\sin^2(\theta/2)}\right)^2 \left((mc)^2 + \vec{p}^2\cos^2\frac{\theta}{2}\right)$$

Mott cross-section

0

Mott Cross-Section (2)

• Further simplification: m=0

$$\frac{d\sigma}{d\Omega} = \left(\frac{\alpha\hbar}{2\bar{p}^{2}\sin^{2}(\theta/2)}\right)^{2}\bar{p}^{2}\cos^{2}\frac{\theta}{2} \qquad E' = |\vec{p}|c \qquad Q^{2} = -q^{2} = -(p_{1} - p_{3})^{2} = 4\bar{p}^{2}\sin^{2}\frac{\theta}{2}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \frac{4\alpha^{2}\hbar^{2}E'^{2}}{q^{4}c^{2}}\cos^{2}\frac{\theta}{2}$$
Multiply by q²:
$$q^{2}\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = (\alpha\hbar)^{2}\frac{\cos^{2}(\theta/2)}{\sin^{2}(\theta/2)}$$
Rutherford cross section!
Scaling behavior!

Rutherford scattering (1)

• Non-relativistic limit: Incident electron is non-relativistic $\ensuremath{\bar{p}}^2 \ll (mc)^2$

Rutherford scattering (2)

• In natural units:

$$\hbar = c = 1$$
 $\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \frac{4\alpha^2 E'^2}{q^4}$

O Note:

- The Rutherford cross section is obtained from the Mott cross section assuming we are working in the non-relativistic limit:
 - \Rightarrow Spin effects of probe and target particle are negligible!

• The Mott cross section is obtained for the case of a target particle at rest (Heavy target): No recoil!

 \Rightarrow Impact of spin 1/2 of probe particle taken into account - Spin effects of target particle negligible: Result is identical to scattering of spin 1/2 on spin 0 target!

• Difference between Rutherford and Mott cross section: $\cos^2(\theta/2)$ factor

• Factor is a consequence of angular momentum conservation:

 $\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \cos^2 \frac{\theta}{2}$

• Helicity conservation for massless particles ($\beta \rightarrow 1$): Scattering by 180° requires spin flip (Impossible for spin 0 target)!