
 

Bernd Surrow

EIC Collaboration Meeting at SUNY Stony Brook
Stony Brook, NY, January 10, 2010 Bernd Surrow

1

Experimental Aspects of
Deep-Inelastic Scattering

-
Kinematics, Techniques and Detectors 



 

Bernd Surrow
EIC Collaboration Meeting at SUNY Stony Brook
Stony Brook, NY, January 10, 2010

Outline

Summary 
and 
Outlook 

DIS Introduction 

DIS process description

Dirac Cross-Section

Mott Cross-Section

Rutherford Cross-Section

DIS Cross-Section

2

DIS Structure Function 
Measurements

DIS Kinematics 

DIS Collider 
Detectors 

Electron

Scattered Electron

Proton

Struck quark ➢ Hadrons 

Proton remnant 



 

Bernd Surrow
EIC Collaboration Meeting at SUNY Stony Brook
Stony Brook, NY, January 10, 2010

3

General considerations on scattering experiments

DIS Introduction

Probing 
smaller 

distances 
requires
larger 

momentum 
transfer q 

(small 
wavelength)

Scatter point-like probe 

onto object (target)

Measurement of the final-state 

(e.g. scattered electron):                              
⇒ Structure of target!

Rutherford

Hofstadter

SLAC
FNAL

CERN

HERA

Electron

Scattered Electron

Proton

Struck quark ➢ Hadrons 

Proton remnant 
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Fixed-target experiment: Endstation A at Stanford Linear Accelerator Center (SLAC)

DIS Introduction
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Collider experiment: Electron-Proton collisions at HERA (DESY, Hamburg, Germany)

DIS Introduction

Ee = 27.5 GeV     Ep = 920 GeV     

Equivalent to fixed target of 
Ee = 50600 GeV:     

Circumference: 6.3km
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DIS major event classes

DIS Introduction

Charged-current
event     

e p → ν X     

Neutral-current
event     

e p → e X     
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Diffractive events

DIS Introduction

Ratio of diffractive to total cross-section 

(200<W<245GeV): 15% at Q2=4GeV2 

Dipole models: Successful description of inclusive and 

various diffractive measurements (e.g. Ratio of 

diffractive to inclusive cross-section, Diffractive 

Vector-Meson production)
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Dirac Cross-Section (Electron-Mass M (Spin 1/2) Particle scattering)

DIS Process Description

Dirac Cross-Section:

Recoil: E’ is kinematically determined by E and θ

Scattering process: 2 → 2

Impact of target-spin 
(mass M)

Impact of electron-spin 

p1 p2

p3 p4

q

Electron

Dirac-particle: Mass M / Spin 1/2

E

E�
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Mott Cross-Section (Electron-Heavy Mass M (Spin 1/2) Particle scattering) 

DIS Process Description

Mott condition: Electron scatters off a much heavier spin 1/2 particle of mass 

M >> m

θ

Calculate four-vector combinations:



Re-write Dirac cross-section using the Mott cross-section

with:

Note:

This is the result we would obtain if the proton would be a Dirac particle: M=mp 

Modifications to Rutherford cross-section: Relativistic effects (SPIN effects: Probe and Target 

(Negligible for very heavy target)!
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Summary

DIS Process Description



Recall:

Feynman graph:

Note: The proton cannot be just a Dirac particle (g=2)!

Therefore: ep scattering
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Elastic ep scattering (1)

DIS Process Description

p1 p2

p3 p4

q

Leptonic tensor

Dirac-particle tensor

p1 p2

p3 p4

q

Leptonic tensor

Hadronic tensor

We do not know exactly how this tensor  
looks like, but:
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Elastic ep scattering (2)

DIS Process Description

High-energy limit:

With:

We find:

Rosenbluth formula

For:

Dirac particle result:

Form factors!



Summary Rosenbluth formula

Note: For heavy target: Contribution from G2
M

 term negligible:

For G2
M = 1 and G2

E = 1 this reduces to the well-known Dirac particle case::
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Elastic ep scattering (3)

DIS Process Description

Mott cross section

Rutherford cross section Recoil term!

τ = −q2/4M2 → 0
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Elastic ep scattering (4)

DIS Process Description

constantPoint-like

Homogeneous 
sphere with edge oscillating
Exponential-like constantdipole

Scattering of electron (Spin 1/2) on point-

charge charge (Spin 0): Mott cross-section

Take into account finite charge distribution: 

Form factor 12C 

Hofstadter, 1953 

Ignore recoil!
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Elastic ep scattering (5)

DIS Process Description

Rosenbluth separation method:

Scattering of electron (Spin 1/2) on proton (Spin 1/2)

   
   

   
   

   
 d
σ

/d
Ω

 [c
m

2 /s
r]

Electron scattering 
on hydrogen target: 
188MeV

Mott

Dirac

Experiment

Point-
charge, 
point-
moment

                                    θHofstadter

Nobel Prize 1961 
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Inelastic ep scattering (1)

DIS Process Description

Simplify this: Massless electron (m=0) of energy E strikes a stationary proton of mass M:

Note:

E’ is no longer kinematically determined by E and θ 

The total hadronic momentum can vary and is no longer constrained, i.e.:

Leptonic tensor Hadronic tensor



Inelastic ep-scattering (2)

Goal: Measure differential cross section in a particular energy range dE’

Leptonic tensor:

Ansatz for hadronic tensor:

With 

We get:

Therefore:

Contraction with leptonic tensor yields:

Note:

• W1 and W2 are functions of q2 and q⋅p

• GE and GM are functions of q2 only!
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Negative four-momentum 
transfer squared!

Bjorken scaling variable

17

DIS Process Description
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Inelastic ep scattering (3)

DIS Process Description

  Friedman, Kendall and Taylor00

Scattering on point-like 
objects: Quarks!

Scattering of electron (Spin 1/2) on proton (Spin 1/2)

Here: Deep-inelastic 

scattering (DIS) Nobel Prize 1990 
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Summary

DIS Process Description

Dirac           
cross-section

Elastic ep         
cross-section

Inelastic ep         
cross-section



General considerations

Four vectors:

Neutral current exchange (NC):

Charged current exchange (CC):

Measurement of structure functions:

NC: Scattered electron and/or hadronic final state

CC: Hadronic final state (neutrino escapes detection)
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Determine kinematics!
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DIS Kinematics



Kinematic variables (1)

Mandelstam variables: 
s,t,u

Centre-of-mass energy: √s

Q2

Negative square of the momentum transfer q

Determines wavelength of photon and therefore the size Δ which can be resolved

Q2
max = s

x
Bjorken scaling variable: Fraction of the proton momentum carried by the struck parton (Quark-Parton model)!

W2

Invariant mass squared of the hadronic final state system
Small x refers to large W2
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…refers to the case where 
masses are ignored!     
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DIS Kinematics
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Kinematic variables (2)
ν

Energy of the exchanged boson in the proton rest frame

y
Fraction of the incoming electron carried by the exchanged gauge boson also known as inelasticity in the proton rest 

t
Momentum transfer at the hadronic vertex

Note the above variables are connected by:

For fixed x and y, ep collider allows to reach much large values in Q2

For fixed y and Q2, ep collider allows to reach much smaller values in x

22

DIS Kinematics
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Collider kinematics (1)

DIS Kinematics
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Collider kinematics (2)

DIS Kinematics

Electron method: scattered electron

Jacquet-Blondel method: hadronic final state
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Collider kinematics (3)

DIS Kinematics

Lines of constant 
electron energy 
(E’e)    

Lines of 
constant 
electron 
angle (ϑ’e)    

Lines of constant 
hadron energy (F)    

Lines of constant 
hadron angle (γ)    
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DIS Kinematics

barrel

forward rear

Collider kinematics (4)

  High-x-high Q2: 

Electron 

predominantly in 

barrel/forward 

direction (High 

energy) and current 

jet in forward 

direction (High 

energy)

    

  Low-x-low Q2: 

Electron and 

current jet (low 

energy) 

predominantly in 

rear direction

  High-x-low Q2: 

Electron in rear and 

current jet (High 

energy) in forward 

direction
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Collider kinematics (5)

DIS Kinematics

Electron method: scattered electron

Jacquet-Blondel method: hadronic final state



Relativistic Invariant Cross-Section

In terms of laboratory variables:

Formulate this now in relativistic invariant quantities:

Instead of W1 and W2, use: F1 and F2:
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DIS Structure Function Measurements

Longitudinal structure 
function: FL



ϑ�
e

Q2 = 4E�
eEe sin2

�
ϑ�

e

2

�

x =
Q2

sy
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Essential idea

DIS Structure Function Measurements

1.  Determination of kinematics 
(e.g. electron method):

2.  Determination of cross-
section and extraction of F2:

Efficiency    Luminosity    

Number of selected 

events    
Background    

bin in
x  and 
Q2   

y = 1− E�
e

Ee
cos2

�
ϑ�

e

2

�

d2σ

dxdQ2
=

(N −B)
L · �

∝ F2
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Results

DIS Structure Function Measurements

F2

F2
Three 
valence 
quarks     

Three 
bound 
valence 
quarks     

F2

Valence 
quarks 
and QCD 
sea     

Three valence 
quarks and sea 
quarks + gluons     

QCD

x: 
Momentum 
fraction of 
struck 
quark

Discovery of asymptotic freedom in the 
theory of strong interaction (Quantum 
Chromo Dynamics): Nobel prize in physics 
2004



Uranium calorimeter (barrel, 
rear and forward sections):

− electromagnetic part:

− hadronic part:

δE

E
=

35%√
E
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δpT

pT
= 0.0059 pT ⊗ 0.0065

DIS Collider Detectors  

Central-Tracking detector:

⇒ Inside superconducting solenoid of    
1.43T

Muon detection system in barrel, 
rear and forward direction

δE

E
=

18%√
E

ep detector system: Here ZEUS Detector
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ZEUS detector - Kinematic variable measurement

DIS Collider Detectors  

Low Q
2

High Q
2

Electron variables     Hadronic final-state variables     
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Connection of DIS cross-section and Dirac / Mott / Rutherford cross-sections

Collider kinematics: Reconstruction of kinematics through electron or hadron 
method or combination of both

Literature:

Review on ep physics: Bernd Surrow, Eur. Phys. J. direct C1:2, 1999. 

Textbook on DIS: Robin Devenish and Amanda Cooper-Sarkar - Deep Inelastic 
Scattering

Summary



Scattering process: 

Initial state:

Final state:

Scattering amplitude: 
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Basic aspects of scattering theory (1)

Backup - DIS Process Description
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Basic aspects of scattering theory (2)

Backup - DIS Process Description

Four-momentum of the ith particle

Statistical factor: 1/j! for each group of j identical particles in the final state

Note:

Delta function enforces 
conservation of energy and 
momentum!

Amplitude M: Dynamics

Phase space: Kinematics
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Basic aspects of scattering theory (3)

Backup - DIS Process Description

Amplitude: Electron-Mass M (Spin 1/2) Particle scattering: Dirac scattering

Momentum transfer:

Approximation: 

Laboratory frame with the target particle of mass M at rest

Electron with energy E scatters at an angle emerging with energy E’
Assumption: E,E’ >> mc2 (m=0)

Spin averaged amplitude:
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Mott Cross-Section (1)

Backup - DIS Process Description

Spin-averaged matrix 
element squared and 
cross-section for: M >> m

Mott cross-section

Impact of target spin for very 
heavy target drops out: Mott 
cross section: Scattering of spin 
1/2 particle on heavy spin 0 heavy 
target

Cross-section result:
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Mott Cross-Section (2)

Backup - DIS Process Description

Further simplification: m=0

Multiply by q2:

Scaling behavior!

Rutherford 
cross section!
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Rutherford scattering (1)

Backup - DIS Process Description

Non-relativistic limit: Incident electron is non-relativistic

This can also be written as:

Or:
Rutherford cross 
section!

cos2θ term drops out in non-
relativistic limit:  

Consequence of spin 1/2 
nature of incoming probe 
particle!



In natural units:

Note: 

The Rutherford cross section is obtained from the Mott cross section assuming we are working in the 

non-relativistic limit: 

⇒ Spin effects of probe and target particle are negligible!

The Mott cross section is obtained for the case of a target particle at rest (Heavy target): No recoil! 

⇒ Impact of spin 1/2 of probe particle taken into account - Spin effects of target particle negligible: 

Result is identical to scattering of spin 1/2 on spin 0 target!

Difference between Rutherford and Mott cross section: cos2(θ/2) factor

Factor is a consequence of angular momentum conservation:

Helicity conservation for massless particles (β→1): Scattering by 180° requires spin flip (Impossible 
for spin 0 target)! 
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Rutherford scattering (2)

Backup - DIS Process Description


