Recherche du plasma de quarks et de gluons au RHIC

QU en

A la suite du programme ions lourds effectué auprès du SPS au CERN, la mise en service récemment du collisionneur RHIC, fonctionnant à des énergies environ dix fois supérieures, ouvre de nouvelles perspectives sur la recherche et l'étude du plasma de quarks et de gluons...

Frédéric Fleuret Laboratoire Leprince-Ringuet

F. Fleuret - LLR

Recherche du plasma de quarks et de gluons au RHIC

• Introduction

La prédiction théoriqueLe contexte expérimental

• Le RHIC et ses expériences

- La machine
- Les expériences
- PHENIX
- <u>Résultats récents</u>
 - Collisions Au-Au au RHIC
 - Collisions d-Au au RHIC

PQG : la prédiction théorique

• **QCD : Le déconfinement**

 Prédiction : à une densité (température) suffisamment élevée, une transition de phase devrait apparaître.

• La transition de phase : QCD sur réseau

PQG : la prédiction théorique

• Le diagramme de phase

Čenimine né čiti

Big Bang

- haute température (10¹² K)
- 10⁻⁶ s. : Plasma → matière confinée

Etoiles à neutron

- effondrement d'étoile
- forte densité de matière
- (5 à 10 fois la densité nucléaire classique)
- matière confinée → plasma

06/06/2003

F. Fleuret - LLR

PQG : le contexte expérimental

• Historique

Centerline of 010

06/06/2003

06/06/2003

PQG : le contexte expérimental

- 15 ans de recherche au CERN
 - 1986 1987 : Oxygène @ 60 & 200 GeV/nucléon
- 1987 1992 : Soufre @ 200 GeV/nucléon
- 1994 2000 : Plomb @ 40, 80 & 158 GeV/nucléon

+ pp et pA pour des études de référence

F. Fleuret - LLR

PQG : le contexte expérimental • 15 ans de recherche au CERN : bilan

(qu)

 $B_{target})$

ഫ്

0.7

0.6

0.5 0.4

Organisation Européenne pour la Recherche Nucléaire ironean Organization for Nuclear research aboratoire Européen pour la Physique des Particule ropean Laboratory for Particle Physics rio europeo per la física delle particelle

New State of Matter created at CERN

At a special seminar on 10 February, spokespersons from the experiments on CERN* 's Heavy lon programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

Theory predicts that this state must have existed at about 10 microseconds after the Big Bang, before the formation of matter as we know it today, but until now it had not been confirmed experimentally. Our understanding of how the universe was created, which was previously unverified theory for any point in time before the formation of ordinary atomic nuclei, about three minutes after the Big Bang, has with these results now been experimentally tested back to a point only a few microseconds after the Big Bang.

 10^{6}

. 10^{2}

10

10

10

10 A_{projectile}B_{taraet}

06/06/2003

F. Fleuret - LLR

Recherche du plasma de quarks et de gluons au RHIC

- Introduction
 La prédiction théorique
 Lé contexte expérimenta
- Le RHIC et ses expériences
 - La machine
 - Les expériences
 - PHENIX
 - Collisions Aa-Au au RHIC
 Collisions d-Au au RHIC

Le RHIC

- La machine : Relativistic Heavy Ion Collider
- 3,9 km circonférence
- de p+p (polarisés)
 - $2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
 - jusqu'à 500 GeV
- à Au+Au
 - 2 x 10²⁶ cm⁻² s⁻¹
 - 200 GeV/nucléon

F. Fleuret - LLR

Le RHIC

• Luminosités

, Čenietene né Čiti

06/06/2003

F. Fleuret - LLR

11

• Les expériences

čanieciene oś iżti

– Deux petites et deux grandes

Le RHIC

PHENIX

• La collaboration

12 countries

Brazil (1)

China (3)

France (5)

Germany (1)

Hungary (3)

India (2)

Israel (1)

Japan (10)

Korea (6)

Russia (5)

Sweden (1) **USA (18)**

56 institutions

~ 450 participants

Brazil	University of São Paulo, São Paulo PH F
China	Academia Sinica, Taipei, Taiwan
	China Institute of Atomic Energy, Beijing
	Peking University, Beijing
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand
	Dapnia, CEA Saclay, Gif-sur-Yvette
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau
	SUBATECH, Ecòle des Mines at Nantes, Nantes
Germany	University of Münster, Münster
Hungary	Central Research Institute for Physics (KFKI), Budapest
0.	Debrecen University, Debrecen
	Eötvös Loránd University (ELTE), Budapest
India	Banaras Hindu University, Banaras
	Bhabha Atomic Research Centre, Bombay
Israel	Weizmann Institute, Rehovot
Japan	Center for Nuclear Study, University of Tokyo, Tokyo
•	Hiroshima University, Higashi-Hiroshima
	KEK, Institute for High Energy Physics, Tsukuba
	Kyoto University, Kyoto
	Nagasaki Institute of Applied Science, Nagasaki
	RIKEN, Institute for Physical and Chemical Research, Wako
	RIKEN-BNL Research Center, Upton, NY
	University of Tokyo, Bunkyo-ku, Tokyo
	Tokyo Institute of Technology, Tokyo
	University of Tsukuba, Tsukuba
	Waseda University, Tokyo
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul
	Kangnung National University, Kangnung
	Korea University, Seoul
	Myong Ji University, Yongin City
	System Electronics Laboratory, Seoul Nat. University, Seoul
	Yonsei University, Seoul
Russia	Institute of High Energy Physics, Protovino
	Joint Institute for Nuclear Research, Dubna
	Kurchatov Institute, Moscow
	PNPI, St. Petersburg Nuclear Physics Institute, St. Petersburg
	St. Petersburg State Technical University, St. Petersburg
Sweden	Lund University, Lund

USA Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN

13

PHENIX

• Le détecteur

- <u>e, γ, h (Central Arms)</u>
 - $|\eta| < 0.35, \ \Delta \phi = \pi$
 - $p_T > 0.2 \text{ GeV/}c$ (charged particles)
- <u>μ (Muon Arms)</u>
 - $\quad 1.2 < |\eta| < 2.4, \ \Delta \phi = 2\pi$
 - $p_{tot} > 2 \text{ GeV/}c$
- Interaction and vertex detectors
 - Beam-Beam Counters $(3.0 < |\eta| < 3.9)$
 - Zero-Degree Calorimeters $(|\eta| > 6.2)$

06/06/2003

• Le détecteur

East Carriage

Ring Imaging Cerenkov

Drift Chamber

Beam-Beam Counter

Central Magnet

West Carriage

• Historique

Cantoniano aé fitil

- Contribution française :
 - Production, installation de l'électronique du bras nord
 - Maintenance des deux bras dimuons (nord & sud)

PHENIX

• Mesure de la centralité : BBC .vs. ZDC

BBC

Beam Beam Counter measures charged particle multiplicity within $3.0 < |\eta| < 3.9$

- <u>ZDC</u> Zero Degree Calo measures neutron multiplicity at beam rapidity.

Centrality measurement

- Use ZDC.vs.BBC information to define centrality
- Use Glauber modeling to extract N_{participants}
 - Impact parameter
 - Number of participants/spectators
 - Number of collisions

06/06/2003

F. Fleuret - LLR

b

PHENIX

<u>Centrality measurement</u>

Participants

- Use ZDC.vs.BBC information to define centrality
- Use Glauber modeling to extract N_{participants}
 - Impact parameter
 - > Number of participants/spectators
 - Number of collisions

Participants

BBC Charge Sum

	centrality	b (fm)	N _{part}	N _{coll}
	0-5%	2,3 ± 0,9	353 ± 19	1091 ± 102
a Francisco Francisco Barra de Carlos Francisco Francisco Francisco Francisco Francisco Francisco Francisco Francisco Francisco Francis Barra de Carlos Francisco Francisco Francisco Francisco Franc	20-25%	7,1 ± 0,5	181 ± 16	422 ± 65
	90-95%	14,5 ± 0,3	4.1 ± 2.5	2.8 ± 2.2

06/06/2003

b

F. Fleuret - LLR

Spectators

Spectators

Recherche du plasma de quarks et de gluons au RHIC

- Introduction
 - La prediction theorique
 Le contexte expérimental
- Le RHIC et ses expériences
 - La machine
 Les expériences
 PHENIX
- <u>Résultats récents</u>
 - Collisions Au-Au au RHIC (01/02)
 - Collisions d-Au au RHIC (02/03)

Résultats récents

Condendary of 422 at constants of 422

Čenímium né řítří

• Collisions Au-Au au RHIC

- Conditions initiales
 - Densité d'énergie
- L'explosion finale
 - Gel chimique
 - Gel thermique
- Signer le déconfinement
 - Suppression du J/ ψ
 - Jet quenching
- Collisions d-Au au RHIC
 - Premiers résultats sur la production de hadrons
 - Tester la production du J/ψ

Densité d'énergie

தீதுத்தை அதை கல

Densité d'énergie Comparaison AGS/SPS/RHIC

Résultats récents

రాజరిలా ఉంటా ాంట

Cantanian of 421 at cantan of est

Čenímikum né řítří

• Collisions Au-Au au RHIC

- Conditions initiales
 - densité d'énergie
- L'explosion finale
 - Gel chimique
 - Gel thermique
- Signer le déconfinement
 - Suppression du J/y
 - Jet quenching
- Collisions d-Au au RHIC
 - Premiers résultats sur la production de hadrons
 - Tester la production du J/ψ

Gel chimique

• Collisions Au-Au

Čenimine né fili

density of the particles of species i in an equilibrated fireball:

$$n_i = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \,\mathrm{d}p}{e^{(E_i(p) - \mu_i)/T} \pm 1}$$

with particle density n_i , spin degeneracy g_i , $\hbar = c = 1$, momentum p, total energy E and chemical potential $\mu_i = \mu_B B_i - \mu_S S_i - \mu_{I_3} I_i^3$.

• Comparaison SPS/RHIC

Carloning of 421 at contact of use

Čenterine of iti

- Mesurer les spectres d'émission des hadrons
- flot radial plus important à RHIC \rightarrow plus forte pression

06/06/2003

F. Fleuret - LLR

Résultats récents

లోజ్రిలిలో సామాని రాయి

Contenies of 421 at conten of 442

Čenietene né fili

• Collisions Au-Au au RHIC

- Conditions initiales
 - Densité d'énergie
- L'explosion finale
 - Gel chimique
 - Gel thermique
- Signer le déconfinement
 - Suppression du J/ ψ
 - Jet quenching
- Collisions d-Au au RHIC
 - Premiers résultats sur la production de hadrons
 - Tester la production du J/ψ

Suppression du J/ψ

లోజెక్టిత్రాలు ప్రముఖ్య యాయి

Cantantina at 121

06/06/2003

F. Fleuret - LLR

27

Production de hadrons à grand P_T

– Pourquoi ?

• Dans la matière colorée, les partons sont susceptibles de perdre une quantité importante d'énergie par rayonnement de gluons

(1.52 <u>22</u>7)

- Conséquences

- Atténuation ou absorption des jets : « jet quenching »
- Suppression des hadrons de grand P_T

F. Fleuret - LLR

Production de hadrons à grand P_T

• Jet quenching

Corrélation angulaire entre une particule de $p_T > 4$ GeV et les autres ($p_T > 2$ GeV)

Accord or+or avec p+p (+ flow) en collisions périphériques...

Désaccord

En collisions centrales...

Production de hadrons à grand P_T

• Spectres des hadrons

- Comparer Au-Au et nucléon-nucléon :

$$R_{AA}(p_{T}) = \frac{d^{2}N^{AA}/dp_{T}d\eta}{T_{AA}d^{2}\sigma^{NN}/dp_{T}d\eta}$$
Section efficace
Nucléon-nucléon
$$Pas d'effet : \qquad R_{AA} < 1 \text{ à bas } P_{T} \\ -R_{AA} = 1 \text{ à grand } P_{T}$$

$$Suppression$$

$$R < 1 \qquad \text{"hard"}$$

0.0

 $- R_{AA} < 1$ à grand P_T

06/06/2003

Tranverse Momentum (GeV/c)

Production de hadrons à grand P_T Spectres des hadrons (Au-Au à 130 GeV)

ywyseese are ^tor ^{to}r '

Production de hadrons à grand P_T Spectres des π⁰ (p-p et Au-Au à 200 GeV)

Production de hadrons à grand P_T Spectres des hadrons (Au-Au à 200 GeV)

– Même comportement h^{\pm}/π^0

06/06/2003

F. Fleuret - LLR

Production de hadrons à grand P_T

čenietene né ižić

• Origine de la suppression – Effets dans l'état initial ? • Modification des PDF dans le noyau : shadowing ou anti-shadowing – Effets dans l'état final ? • Perte d'énergie du parton dans le milieu via le rayonnement de freinage gluonique • Vérification – d-Au à 200 GeV

Production de hadrons à grand P_T Collisions d-Au

06/06/2003

F. Fleuret - LLR

Production de hadrons à grand P_T Bilan : Collisions Au-Au et d-Au

Prédictions théoriques:

d+Au: I. Vitev, nucl-th/0302002

Au+Au: I. Vitev and M. Gyulassy, hep-ph/0208108, to appear in Nucl. Phys. A; M. Gyulassy, P. Levai and I. Vitev, Nucl. Phys. B 594, p. 371 (2001).

Tester la production du J/ψ

Résultats Fermilab et CERN

0.9

0.8

0.7

0.6

0.5

α

 $x = P_n / P_H$ C

F. Fleuret - LLR

06/06/2003

F. Fleuret - LLR

Conclusion

- Carlaina of 1221 at contra of use

Čenietke né řiti

- Au RHIC depuis 2001
 - Données p-p, Au-Au, d-Au
 - Résultats inattendus à grand P_T
 - Pas de conclusion sur la suppression du J/ψ
- Automne 2003
 - Nouvelle prise de données Au-Au
- Futur
 - Systèmes plus légers

Le RHIC

• Les acceptances

- Čenierika od 12141

06/06/2003

F. Fleuret - LLR

41

Production de hadrons à grand P_{T} • Collisions d-Au : centralité

0

0

2

4

⁶ р_⊤ (GeV/с)

PQG : la prédiction théorique

Cantarilna of 010

• **QCD : Liberté asymptotique**

– Potentiel à courte distance

 $V_{short} = -\frac{4}{3} \frac{\alpha_s(r)}{r} \qquad \lim_{r \to 0} \alpha_s(r) = 0$

- Validité de la théorie des perturbations

• **QCD : Confinement**

- À des échelles de l'ordre de la taille des hadrons (~1fm), les méthodes perturbatives perdent leur validité
- La corde

 $V_{long} = kr$ avec $k \sim 1$ GeV/fm

ЭĤ

Transparence Comparaison AGS/SPS/RHIC

06/06/2003

F. Fleuret - LLR

Multiplicité

- Operations of 4271 at constant of 4271

- Collisions Au-Au
 - $dn_{ch}/d\eta|_{\eta=0} \rightarrow 670$ (mesurés par les 4 expériences) $- N_{total} \sim 6000$ particules !

