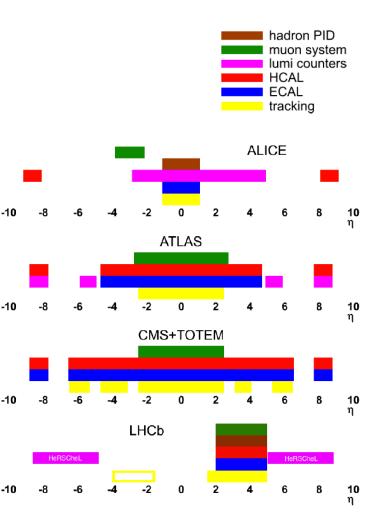
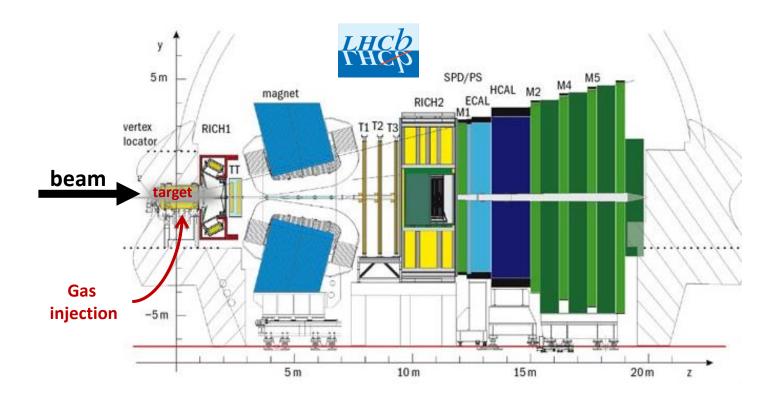
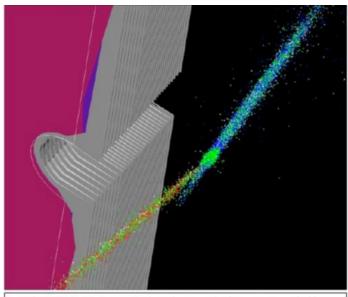

- 1. The LHCb detector for heavy ions
- 2. Current performances and results: PbPb, pPb/Pbp, fixed-target
- 3. Perspectives for future LHC runs


1. The LHCb detector – setup

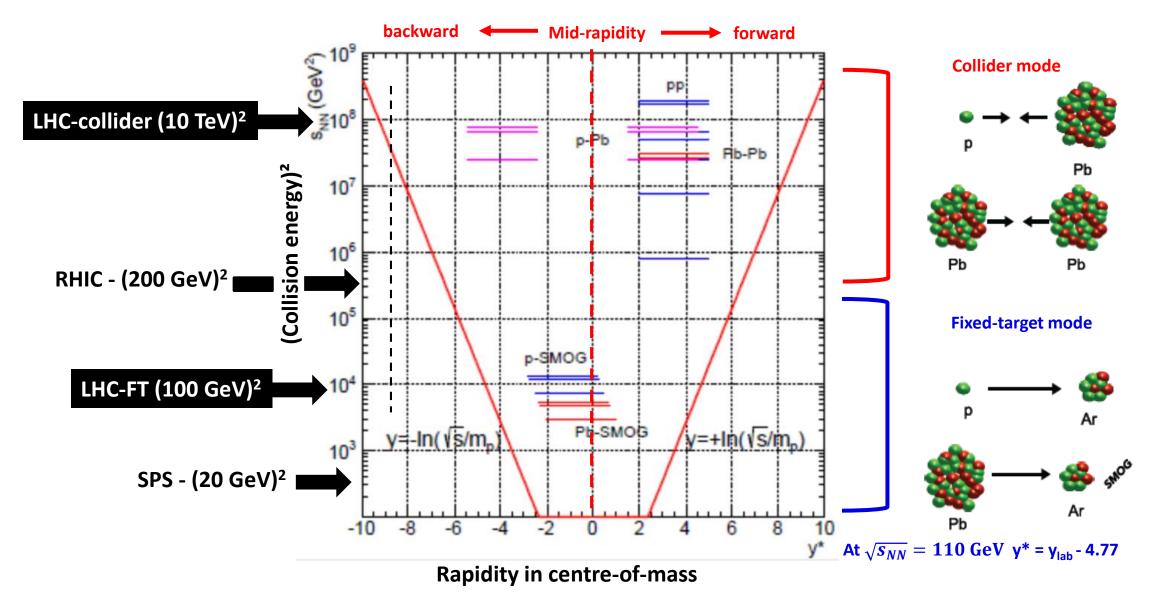
Single arm spectrometer, the only LHC experiment fully instrumented in 2 < η < 5

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022



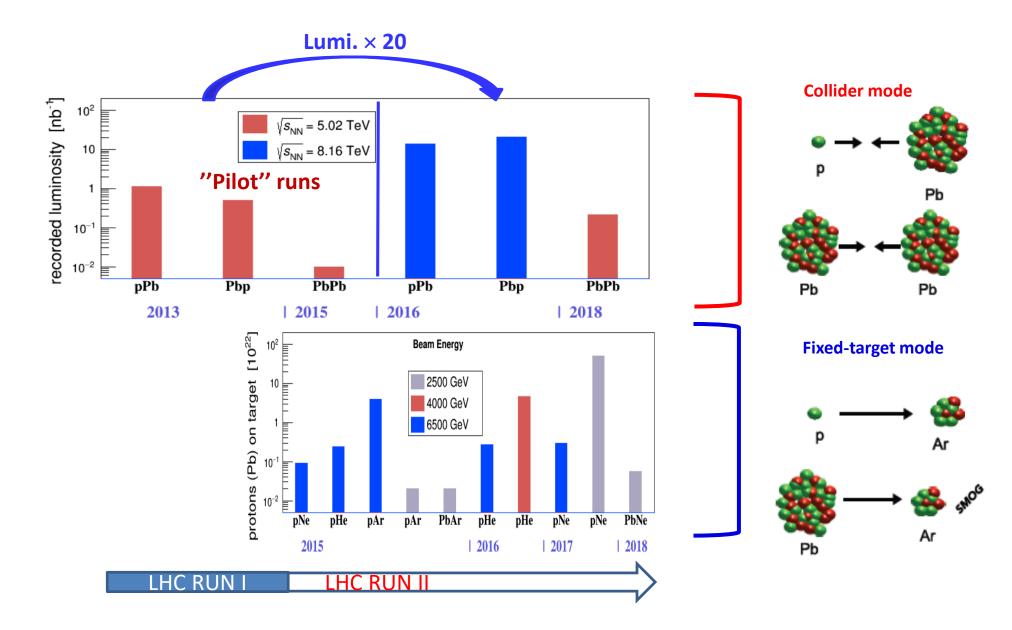

- LHCb is specialised in heavy flavour precision physics, beauty and charm:
 - Optimised for low pile-up collisions (*ie* low multiplicity):
 - Precise reconstruction of production and decay vertices
 - Correlations between particles: flavour tagging
- Some characteristics of the experiment make it attractive for Heavy ion physics :
 - Instruments fully the forward region: 2<η<5
 - <u>Precise vertexing</u>: separation of prompt production from *B* decay products
 - <u>Precise tracking</u>: reconstruction down to $p_{T}=0$
 - <u>Particle identification</u>: full reconstruction of hadronic decays of charm or beauty, such as $D^0 \rightarrow K\pi$

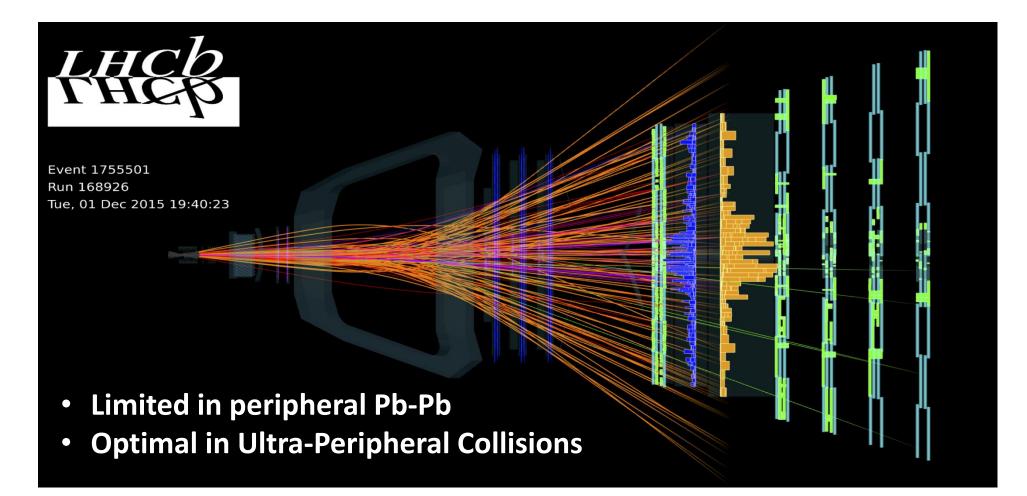
- Can also operate in fixed-target mode: unique at LHC
 - Injecting gas in the LHCb VErtex LOcator (VELO) tank, primarly done to perform luminosity measurement.
 - Can be used as an internal gas target
 - Allows measurement of *p*-gas and ion-gas interactions


Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle. Beam 1 - Beam 2, Beam 1 - Gas, Beam 2 - Gas.

> Noble gas only : (very low chemical reactivity)

He, Ne, Ar, Kr, Xe A = 4, 20, 40, 84, 131


Gas pressure: 10⁻⁷ to 10⁻⁶ mbar



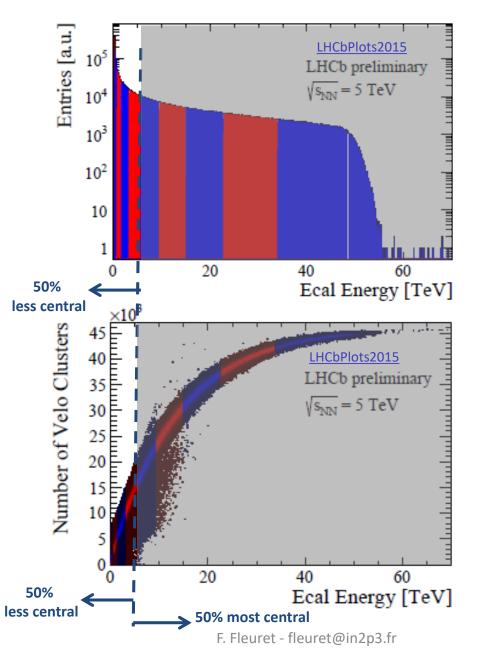
1. The LHCb detector – data taking for Heavy Ion physics

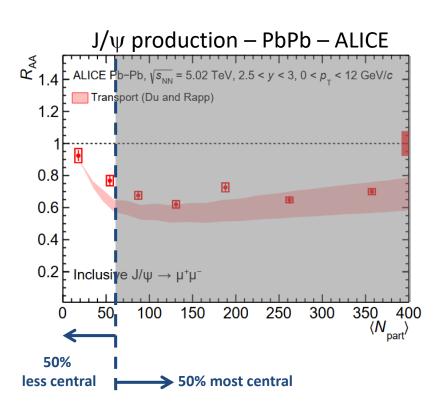
2. Pb-Pb collisions @ $\sqrt{s_{NN}} = 5$ TeV

Two data sets:

- $\sqrt{s_{NN}}$ = 5 TeV Pb-Pb interactions recorded in 2015: ~ 10 µb⁻¹
- $\sqrt{s_{NN}}$ = 5 TeV Pb-Pb interactions recorded in 2018: ~ 210 µb⁻¹

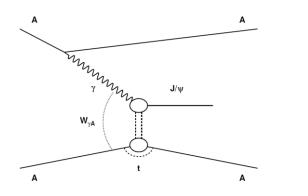
2. Pb-Pb collisions @ $\sqrt{s_{NN}}$ = 5 TeV – 2015 data




peripheral

High Ecal Energy

central

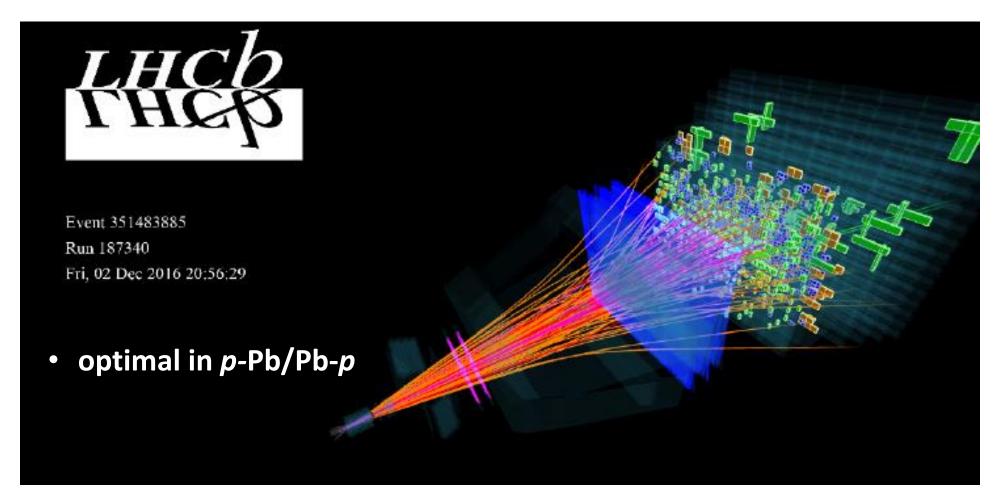

- LHCb centrality reach
 - Detector limitation due to high occupancy in Pb-Pb collisions
 - No saturation of the calorimeter
 - But, saturation in the Vertex Locator (VELO)
- LHCb current limitations
 - Current tracking algorithm efficient up to 50% most central
 - Physics studies limited to 50% less central events

• $J/\psi \rightarrow \mu^+\mu^-$ in Ultra-Peripheral Collisions (UPC)

One ion interacts with the electromagnetic field of the other : coherent J/ ψ photo-production Sensitive to nPDF, saturation, ...

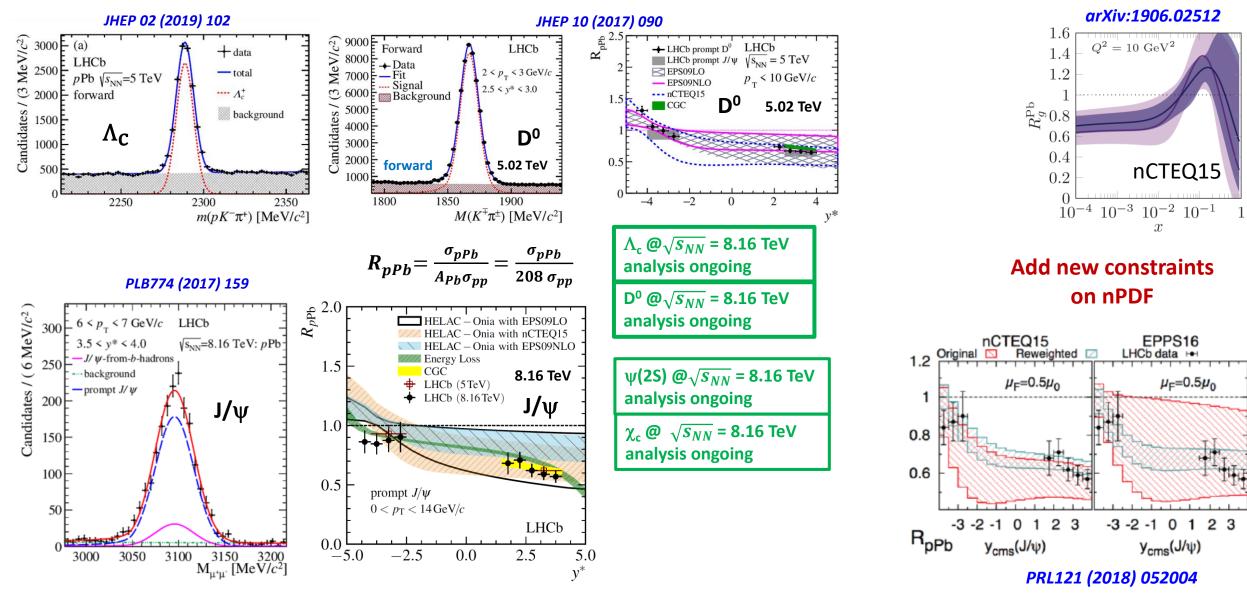
Nothing in the detector but two tracks

 $\sigma^{coherent}_{J/\psi} = 5.27 \pm 0.21 \pm 0.49 \pm 0.68 \text{ mb}_{(stat.)}$ (syst.) (lumi.)



Analysis of J/ ψ and ψ (2S) production in PbPb 2018 UPC data ongoing (stat. \times 20) Analysis of J/ ψ and D⁰ production in peripheral PbPb 2018 ongoing (can also do χ_c)

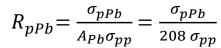
2. Proton-Pb/Pb-proton collisions

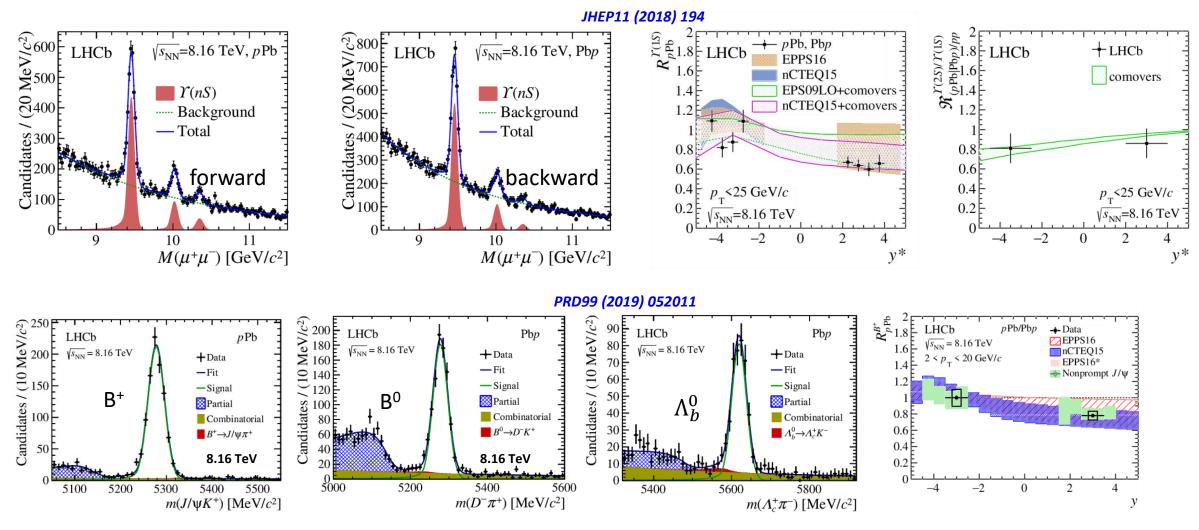


Two data sets :

- $\sqrt{s_{NN}}$ = 5 TeV proton-Pb/Pb-proton interactions recorded in 2013: ~ 1.6 nb⁻¹
- $\sqrt{s_{NN}}$ = 8.16 TeV proton-Pb/Pb-proton interactions recorded in 2016: ~ 30 nb⁻¹

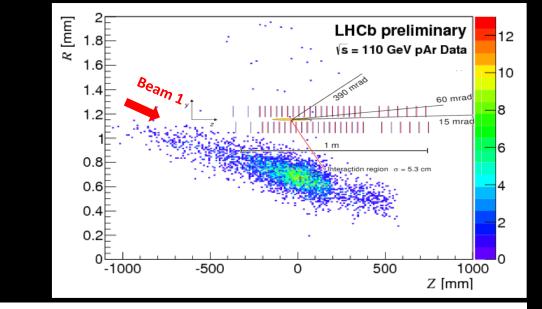
• Charmonia and Open Charm in pPb@ 5 TeV/8 TeV – 2016/2018 data




F. Fleuret - fleuret@in2p3.fr

2. Proton-Pb and Pb-proton collisions

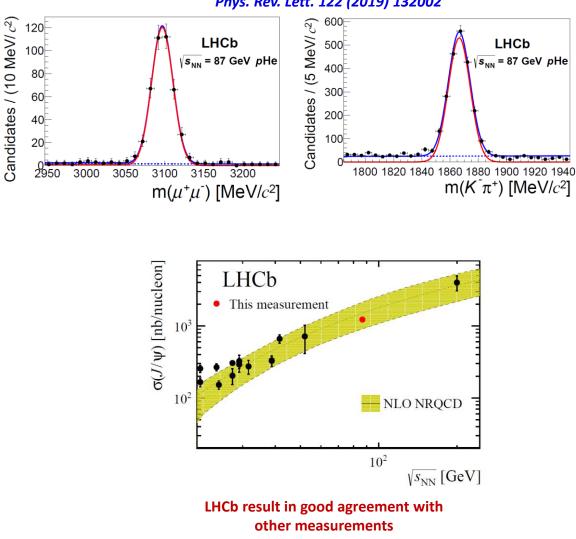
• Bottomonia and open beauty – pPb@ 8 TeV – 2018 data



Statistics still limited \rightarrow HL-LHC

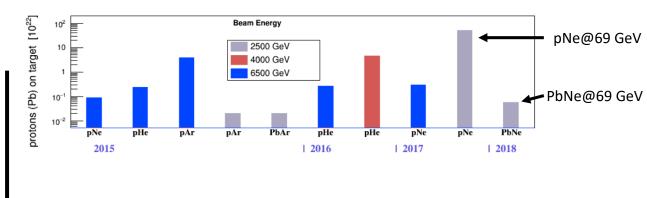
2. Fixed-target collisions

[10²²] 10² Beam Energy 2500 GeV protons (Pb) on target 10 📄 4000 GeV 6500 GeV 10-10 PbAr pNe pHe pAr pAr рНе рНе pNe pNe 2016 2015 2017

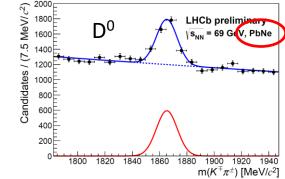

• Unique in fixed-target mode

Two data sets presented here:

- $\sqrt{s_{NN}}$ = 110 GeV proton-Ar interactions 2015: ~ 4×10²² Protons On Target (17h)
- $\sqrt{s_{NN}}$ = 86.6 GeV proton-He interactions 2016: ~ 4×10²² POTs (87h) \mathcal{L}_{pHe} = 7.6 ± 0.5 nb⁻¹



 $J/\psi \rightarrow \mu^+\mu^-$ and $D^0 \rightarrow K^{\mp}\pi^{\pm}$ in *p*-He @86.6 GeV ٠



Phys. Rev. Lett. 122 (2019) 132002

Ongoing analysis •

Analysis of J/ψ and D^0 production in pNe and PbNe ongoing Analysis of $\psi(2S)$ and χ_c production in pNe ongoing Analysis of Λ_c production in pNe ongoing

• Published results

Title	Details	Reference
open beauty in p-Pb 8 TeV	PAPER-2018-048 🗗	Phys. Rev. D 99, 052011 🗗
Status and Prospects for Fixed Target Physics (PBC)	LHCB-PUB-2018-015 Z	
SMOG2 Technical Design Report	LHCB-TDR-020	
Projections for pPb analyses in Run 3 and Run 4	LHCB-CONF-2018-005	
First measurements of charm production fixed-target configuration at the LHC	PAPER-2018-023	PRL 122 (2019) 132002 🗗
Study of Upsilon production in pPb collisions at √sNN=8 TeV	PAPER-2018-035 🗗	JHEP11(2018)194 🗗
Prompt Lc production in pPb collisions at √sNN=5.02 TeV	PAPER-2018-021	JHEP 02 (2019) 102 🗗
Measurement of antiproton production in pHe collisions at √sNN=110 GeV	PAPER-2018-031	PRL 121 (2018) 222001 🗗
Study of prompt D0 meson production in pPb collisions at √sNN=5 TeV	PAPER-2017-015	JHEP 10 (2017) 090 🗗
Prompt and nonprompt J/ ψ production and nuclear modification in pPb collisions at $\sqrt{sNN=8.16}$ TeV	PAPER-2017-014	PLB 774 (2017) 159 🗗
Study of $\psi(2S)$ production and cold nuclear matter effects in pPb collisions at 5 TeV	PAPER-2015-058 🗗	JHEP 03 (2016) 133 🗗
Measurements of long-range near-side angular correlations in sNN=5 TeV proton-lead collisions in the forward region	PAPER-2015-040	PLB 762 (2016) 473 🗗
Observation of Z production in proton-lead collisions at LHCb	PAPER-2014-022	JHEP 09 (2014) 030 🗗
Study of Y production and cold nuclear matter effects in pPb collisions at 5 TeV	PAPER-2014-015	JHEP 07 (2014) 094 🗗
Study of J/ ψ production and cold nuclear matter effects in pPb collisions at 5 TeV	PAPER-2013-052	JHEP 02 (2014) 72 🗗

Not yet addressed

- No flow analysis
- No low/intermediate mass dileptons (thermal radiations) analysis
- Correlations: Double J/ψ, double-D, ...
- Drell-Yan

٠

3. Large statistical increase of LHC run 3 and run 4 – precision era

• Detailed (proposed) schedule for Heavy ion physics

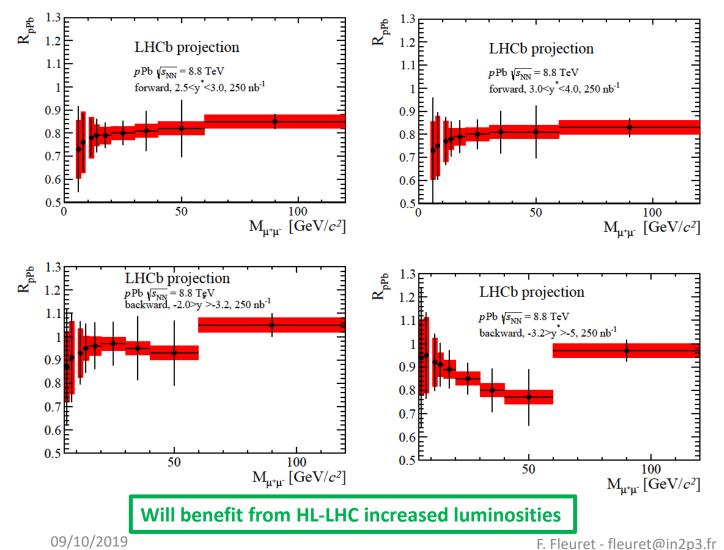
Physics of HL-LHC WG5: Future physics opportunities for high-density QCD at the LHC arXiv1812.06772 - CERN-LPCC-2018-07

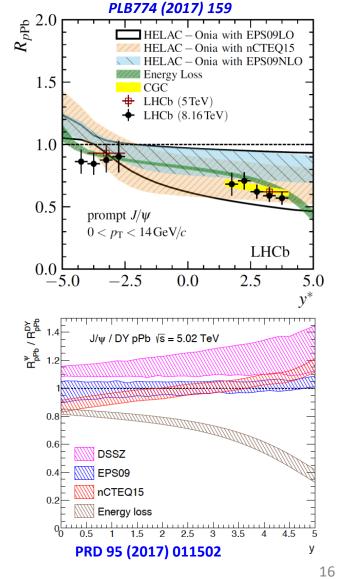
LS2	Year	Systems, $\sqrt{s_{_{\rm NN}}}$	Time	$L_{ m int}$
LHCb upgrade 1a	2021	Pb–Pb 5.5 TeV	3 weeks	2.3 nb^{-1}
		pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
LHC Run 3 🔫	2022	Pb–Pb 5.5 TeV	5 weeks	$3.9~{ m nb}^{-1}$
		O–O, p–O	1 week	$500~\mu\mathrm{b}^{-1}$ and $200~\mu\mathrm{b}^{-1}$
	2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
		pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
	2027	Pb–Pb 5.5 TeV	5 weeks	3.8 nb^{-1}
LHCb upgrade 1b		pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
LHC Run 4 🚽	2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
		pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
	2029	Pb–Pb 5.5 TeV	4 weeks	3 nb^{-1}
LS4 LHCb upgrade 2	Run-5	Intermediate AA pp reference	11 weeks 1 week	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)

LHCb is very well placed to have a **decisive contribution** to Heavy Ion Physics in LHC run 3 and HL-LHC

- Best placed in pp and pPb at forward rapidity
 - In pPb/Pbp: $\mathcal{L} \sim 30 \text{ nb}^{-1}$ in run 2 (~1M J/ ψ , ~8M D⁰) $\rightarrow \mathcal{L} \sim 300 \text{ nb}^{-1}$ in run 3 + 300 nb⁻¹ in run 4
- Well placed (less limited) in PbPb at forward rapidity
 - Will benefit from **detector upgrade**
- Start full physics program in fixed-target mode
 - Will benefit from target and detector upgrade

F. Fleuret - fleuret@in2p3.fr

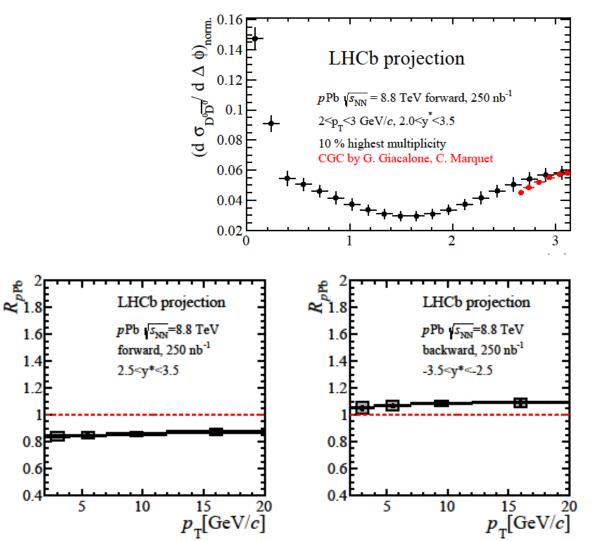


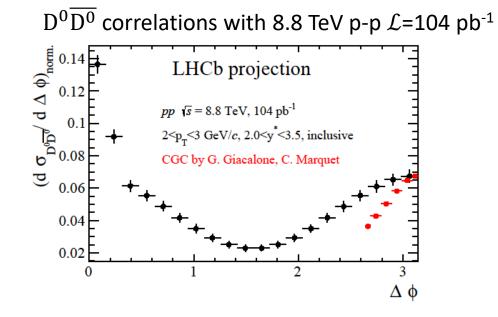

3. proton-Pb/Pb-proton in Run 3 + Run 4

Physics of HL-LHC WG5: Future physics opportunities for high-density QCD at the LHC arXiv1812.06772 - CERN-LPCC-2018-07

Example: Drell-Yan measurement ٠

Expected performances with *p*-Pb \mathcal{L} =0.25 pb⁻¹ data samples



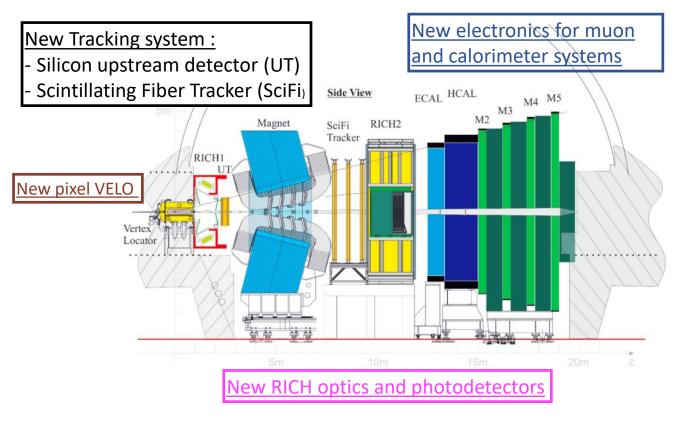

3. Proton-Pb/Pb-proton in Run 3 + Run 4

• Example: Open charm measurement

Physics of HL-LHC WG5: Future physics opportunities for high-density QCD at the LHC <u>arXiv1812.06772</u> - CERN-LPCC-2018-07

 $D^0\overline{D^0}$ correlations with 8.8 TeV *p*-Pb \mathcal{L} =0.25 pb⁻¹ data samples

• Example: Open beauty measurement

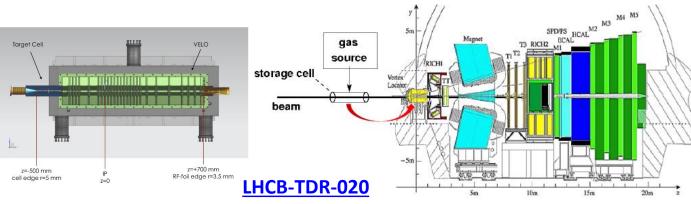

B⁺ measurement with 8.8 TeV *p*-Pb \mathcal{L} =0.25 pb⁻¹ and 8.8 TeV Pb-*p* \mathcal{L} =0.25 pb⁻¹ data samples

3. Detector upgrade – LHCb Upgrade I

- Upgrade based on pp collision requirements :
 - Collision rate at 40 MHz.
 - Pile-up factor $\mu\approx 5$
 - Remove L0 triggers (software trigger)
 - Read out the full detector at 40 MHz.
 - Replace the entire tracking system.

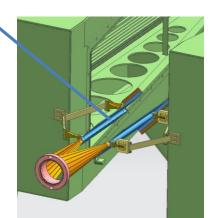
• Benefit for heavy ion physics

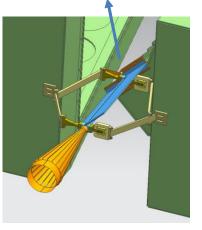
Can reach more central PbPb collisions



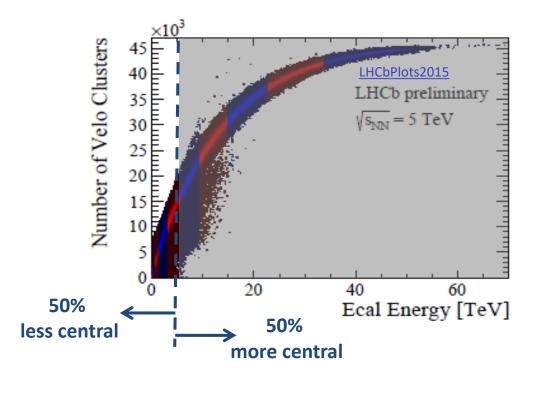
3. Fixed-target in Run 3

• SMOG2 upgrade


System $\sqrt{s_{\rm NN}}$

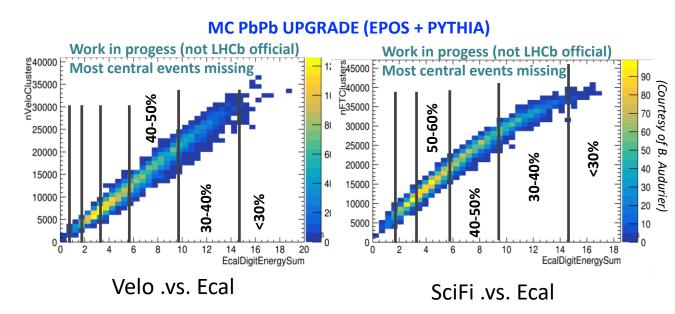

- Installation of a storage cell this winter
 - Diameter = 1cm, length = 20 cm
 - Uptream of the VELO (-50 à -30 cm w.r.t. IP)
 - Increase of the gas density up to $\times 100$
- Full physics program starting 2021
 - Very large statistics
 - Various target, including H₂ (pp coll.)

	(GeV)				
pH_2	115				
pD_2	115				
pAr	115				
$p \mathrm{Kr}$	115		Current SMOG result	SMOG largest sample	SMOG2 example
$p \mathrm{Xe}$	115		pHe@86 GeV	pNe@68 ~GeV	pAr@115 GeV
$p \mathrm{He}$	115	Int. Lumi.	$7.6/\mathrm{nb}$	$\sim 100/{\rm nb}$	$\sim 10/{ m pb}$
$p \mathrm{Ne}$	115	syst. error on J/ψ x-sec.	7%	6 - 7%	3 - 4 %
pN_2	115	J/ψ yield	400	15k	$3.5\mathrm{M}$
pO_2	115	D^0 yield	2000	100k	35M
		Λ_c yield	20	1k	350k
PbAr	72	ψ' yield	negl .	150	35k
PbH_2	72	$\Upsilon(1S)$ yield	negl .	10	3k
pAr	72	DY $\mu^+\mu^-$ yield	negl .	10	3k
P/11	12	(5 < M < 9 GeV)			



3. Pb-Pb in Run 3

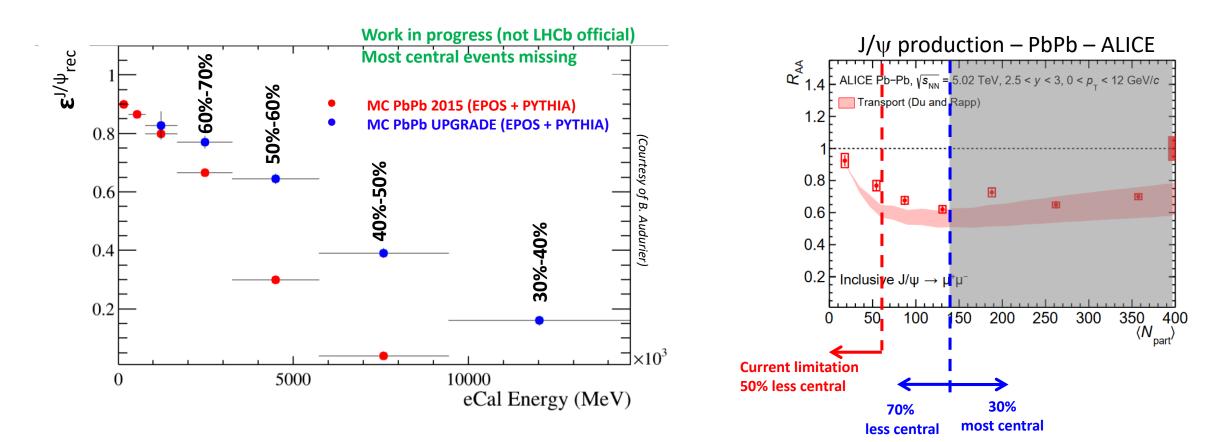
• Detector performances in Pb-Pb collisions


<u>Run2</u>: Vertex Locator saturates

Reconstruction limited to 50% less central

<u>Run 3:</u> New Vertex Locator does not saturate

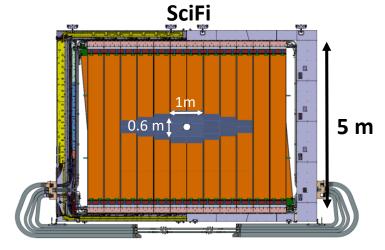
Expect SciFi to saturate in most central collisions

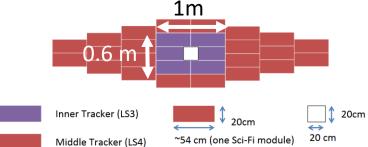


(Most central events missing because of LHCb software issues, currently under investigation, **work in progress**)

Expect tracking limitation due to SciFi

• J/ ψ reconstructible up to (at least) 30% centrality


• LHCb can play a significant role already in Run 3 Pb-Pb collisions


– Can precisely study J/ ψ , ψ (2S), χ_c , bottomonia, open charm, open beauty

3. High-Luminosity LHC : Run 4 & run 5

- Run 4: increase luminosities up to $\int_{Run3}^{Run4} \mathcal{L} = 10$ hb⁻¹ for PbPb, 0.6 pb⁻¹ for pPb/Pbp
- <u>Run 5</u>: high luminosity runs with intermediate-A nuclei
 - Typically : ¹⁶O-O, ⁴⁰Ar-Ar, ⁸⁴Kr-Kr, ...
 - Much higher lumi than PbPb while still producing a QGP
 - With L~5 pb⁻¹ ArAr, will record ~10× (Run3+Run4) pPb stat.
 - Heavy quarks, low mass dileptons, photons, Drell-Yan, ...
 - Much lower underlying event multiplicity -> much smaller combinatorics
 - Bridge between pPb and PbPb, without requiring centrality selection
- LHCb Detector upgrades will benefit to heavy ion physics
 - LS2 (2019 2020) Upgrade I → Run 3
 - New tracking systems
 - Expect to cover up to 30% most central PbPb collisions (*quantified* with full MC)
 - LS3 (2024 2025) Upgrade Ib → Run 4
 - Mighty tracker stage 1: Inner tracker 100 $\mu m \times 500 \ \mu m$ pixels or 0.1 mm \times 100 mm strips
 - Will further extend the (PbPb) centrality coverage (to be checked)
 - − LS4 (2030) Upgrade II → Run 5,...
 - Mighty tracker stage 2: Inner tracker + Middle tracker
 - With appropriate design, opportunity to cover the full centrality range in Pb-Pb

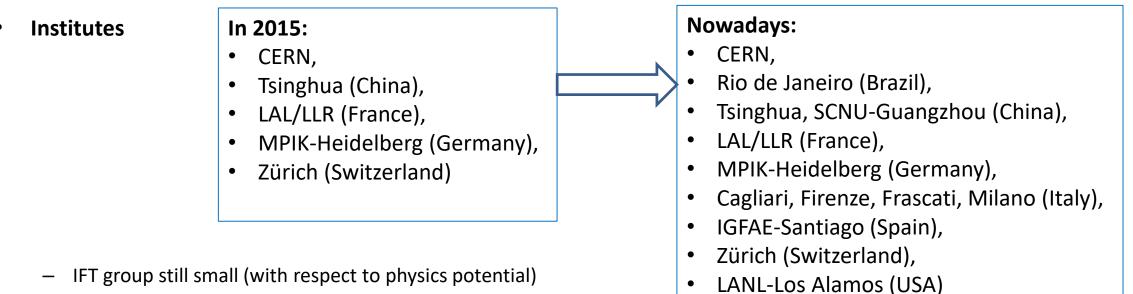
Guess-estimate based on ALICE Phys. Rev. Lett. 116, 222302 (2016)

	Centrality	<dn<sub>ch/dη></dn<sub>	Ratio wrt 30-40%				2010 007		
	0-5%	1940	3.8				LHCb-INT-2019-007 Maximum integrated occupancy in %		
	0-10%	1777	3.5	_		Upgrade Ib	Upgrade II	panoj 11 70	
LHCb Run 4	10-20%	1180	2.3	×2.3 🤇	SciFi only With IT	3.2 ± 0.2 1.4 ± 0.1	18.4 ± 0.4 6.8 ± 0.3	×10.8	
	20-30%	786	1.5		With IT + MT		1.7 ± 0.1		
LHCb Run 3	30-40%	512	1						

09/10/2019

F. Fleuret - fleuret@in2p3.fr

• people


The LHCb IFT (Ion and Fixed Target) group is born in 2015 with ~10 people

LHCb-INT-2015-019 ; CERN-LHCb-INT-2015-019

Proposal for LHCb Participation to the Heavy Ion Runs

Blouw, J (MPIK, Heidelberg, Germany); Ferro-Luzzi, Massimiliano (CERN); Fleuret, F (LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France); Manca, Giulia (LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France); Massacrier, L (LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France); Mueller, K (Physik-Institut der Universitat Zurich, Zurich, Switzerland); Robbe, Patrick (CERN); Schmelling, Michael (MPIK, Heidelberg, Germany); Schmidt, Burkhard (CERN); Yang, Zhenwei (Center for High Energy Physics, Tsinghua University, Beijing, China)

Since then the group increased from < 10 to nowadays ~25 permanent physicists

New contributors more than welcome