

Charm production with SMOG at LHCb

Running LHCb in a fixed-target mode

Heavy flavor production in Heavy Ion collisions

F. Fleuret on behalf of the LHCb collaboration

XSCRC2017

Frédéric Fleuret - LAL/LLR - LHCb

LHCb detector

- Designed for heavy flavor physics
- Single arm spectrometer, fully instrumented in 2 < y < 5

Excellent vertex, IP and decay time resolution $\sigma(\text{IP}){\approx}20\mu\text{m}$

Very good momentum resolution δp/p≈0.5–1% for 0<p<200 GeV/c

Particle identification

 $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV/c $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1-3\%$

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022 10

hadron PID

muon system lumi counters HCAL

SMOG (System for Measuring Overlap with Gas)

- Injecting gas in LHCb Vertex Locator (VELO) region
 - Primary role : luminosity measurement
 - Can be used as an internal gas target
 - Allows measurement of p-gas and ion-gas interactions

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

am I - Beam 2, Beam I - Gas, Beam 2 - Gas.

Noble gas only : (very low chemical reactivity)

He, Ne, Ar, Kr, Xe A = 4, 20, 40, 84, 131

Gaz pressure: 10⁻⁷ to 10⁻⁶ mbar

Fixed-target program

LHCb rapidity coverage in the center-of-mass system

- Physics case
 - − 2.75 TeV Pb beam on fixed target \rightarrow $\sqrt{s_{NN}}$ ~71 GeV (close to the 17 GeV regime reached at SPS)
 - Investigate the Quark Gluon Plasma (QGP) phase transition
 - Thanks to **unique capabilities**, LHCb offers **new opportunities** in the charm sector: J/ψ , ψ' , χ_c , D⁰, D^{+/-}, D^{*}, Λ_c ... (in the 90's the NA50/SPS experiment measured only J/ψ and ψ' in PbPb @ 17 GeV)
- Accessing similar energy density regime (than SPS): operate PbAr@71 GeV
 - Particle multiplicity is related to event centrality and center-of-mass energy
 - Particle multiplicity can be used to compare different A+B collisions at different $\sqrt{s_{_{
 m NN}}}$

	System \ centrality	60 – 100%	50 – 60%	40 – 50%	30 – 40%	20 – 30%	10 – 20 %	0-10%
$\overline{\mathbf{\Lambda}}$	PbNe – 71 GeV	108.6	254.4	392.5	588.0	814.5	1086.0	1494.9
HC HC	PbAr – 71 GeV	123.6	308.8	496.5	806.6	1228.3	1711.9	2372.7
$\overline{\mathbf{T}}$	PbKr – 71 GeV	196.9	533.6	919.1	1451.2	2205.5	2986.6	4084.3
SPS	PbPb – 17 GeV	124.2	331.6	605.9	919.6	1338.7	2035.8	2980.5

- PbAr @ 71 GeV multiplicity \equiv PbPb@17 GeV multiplicity

→ PbAr @ 71 GeV is a good starting point to compare with NA50 (SPS)

- Serve as a **baseline** for nucleus-nucleus collisions
- Specific proton-nucleus physics program:
 - Precision cross-section measurement for cosmic ray physics (see G. Graziani's talk)
 - Nuclear parton distribution function (nPDF), saturation, energy loss, nuclear absorption, ...
- With SMOG, LHCb offers a large rapidity coverage (~3 rapidity units) at large Bjorken-x x₂
 - Give access to **nPDF anti-shadowing** region and **intrinsic charm** content in the nucleon

LHCb fixed-target mode

- Data recorded
 - Gas pressure in the VELO: ~ $1 2 \times 10^{-7}$ mbar

System	Duration	CMS energy	Protons on target
2015			
рНе	7h	110 GeV	2×10 ²¹
pNe	12h	110 GeV	1×10 ²¹
pAr	17h	110 GeV	4×10 ²²
pAr	11h	69 GeV	2×10 ²⁰
PbAr (To be analyzed)	100h	69 GeV	2×10 ²⁰
2016			
pHe (see G. Graziani's talk)	18h	110 GeV	3×10 ²¹
pHe (to be analyzed)	87h	87 GeV	4×10 ²²

- Presented here : pAr @ 110 GeV (LHCb-CONF-2017-001)
 - Preliminary results on heavy flavor production with SMOG
 - Study J/ ψ and D⁰ production in $\sqrt{s_{NN}}$ =110 GeV proton-argon collisions
 - Demonstration of feasibility of the heavy- flavor LHCb fixed-target program

Data sample

• pAr collisions @ 110 GeV

- 17h of pAr collisions with 685 non-colliding bunches: ~4×10²² protons on target
- Select events with Beam 1 only at interaction point
- Apply topological cuts to remove possible residual proton-proton collisions (ghost charge)
- Select events with Z_{vertex} inside VELO $Z_{vertex} \in [-20 \text{ cm}, 20 \text{ cm}]$

- J/ψ and D^0 signal
 - Overall data (17h) : ~500 J/ ψ ~6500 D⁰

- Very clear signal, very small background

• 4 p_T bins \in [0, 600] – [600, 1200] – [1200, 1800] – [1800, 8000] MeV/c

LHC

4 rapidity bins : [2, 3] – [3, 3.5] – [3.5, 4] – [4, 4.6]

Yield corrections and uncertainties

(LHCb-CONF-2017-001)

Y^{measured} extracted from mass fits are corrected for different efficiencies:

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{acc} \times \boldsymbol{\varepsilon}_{trig} \times \boldsymbol{\varepsilon}_{sel} \times \boldsymbol{\varepsilon}_{reco} \times \boldsymbol{\varepsilon}_{PID}$$

geometrical acceptance, trigger, selection, reconstruction, particle identification

Corrections are computed using pAr simulation samples and pp 13 TeV data

Source of uncertainties	J/ψ y	J / ψ p _T	D ^o y	D ^o p _T	
Corr. between bins					
Signal selection	1.4%	1.4%	2.2%	2.2%	
Signal extraction	2.3%	2.3%	2.3%	2.7%	
Uncorr. between bins					
MC smaple	(1.2 – 2.6)%	(0.9 – 1.4)%	(1.0 – 1.9)%	(1.0 – 1.5)%	
Tracking	(2.2 – 3.7)%	(2.2 – 2.9)%	(2.7 – 3.4)%	(2.8 – 3.6)%	
PID	(0.2 – 2.7)%	(0.1 – 2.0)%	(4.1 – 8.8)%	(4.8 – 6.9)%	
Stat. uncertainties	(7.7 – 12.5)%	(7.8 – 13.6)%	(0.7 – 3.7)%	(0.6 – 3.4)%	

J/ψ uncertainties are dominated by statistical uncertainties

J/ψ corrected yields

- J/ ψ transverse momentum and rapidity distributions
 - Box = quadractic sum of all uncertainties

– Red boxes = MC

- Pythia8-CT09MCS/NRQCD
- Overall MC yields normalized to overal data yields

J/ ψ yields compared to phenomenological parametrizations

Phenomenological parametrizations based on

- Arleo, F. and Peigné, S. J. High Energ. Phys. (2013) 2013:122
- Arleo, F. et al., J. High Energ. Phys. (2013) 2013: 155
- MC and phenomenological distributions are normalized to data
- Phenomenological parameters
 - extracted from linear (blue plain curve) and logarithmic (green dashed curve) interpolations between 41.5 GeV and 200 GeV measurements
- No strong difference observed within uncertainties

D⁰ corrected yields

• D⁰ transverse momentum and rapidity distributions

– Red boxes = MC

- Pythia8-CT09MCS
- Overall MC yields normalized to overal data yields

J/ψ to D^0 ratios

• J/ ψ / D⁰ cross section ratio vs. p_T and rapidity

Luminosity cancel out in the cross section ratio

 $\left(\frac{\sigma(J/\psi)}{\sigma(D^0)} = \frac{Y(J/\psi)}{\mathcal{L}} \times \frac{\mathcal{L}}{Y(D^0)}\right)$

- No significant dependence of $\sigma(J/\psi)/\sigma(D^0)$ with rapidity
- $\sigma(J/\psi)/\sigma(D^0)$ ratio increases with transverse momentum
- Need theoretical predictions !

Bjorken-x distributions

PRD75

17

Other charmed hadrons

• Other possible measurements: signals extracted from these pAr data

- LHCb has been designed for heavy flavor studies
 - Offers the capabilities to measure many charm hadrons in a wide rapidity range
- LHCb is the only experiment at LHC capable of running in a fixed-target mode
 - Operate at $\sqrt{s_{NN}} = 70$ GeV in lead-nucleus collisions
 - Operate at $\sqrt{s_{NN}} = 110$ GeV in proton-nucleus collisions
- First measurement of heavy flavor production in fixed-target mode completed
 - Measured ~500 J/ ψ and 6500 D⁰, other charm hadrons observed
 - Theoretical predictions needed for J/ψ / D^0 ratio (nPDF) and D^0 yield (Intrinsic Charm)
 - Demonstrate the feasibility of a heavy-flavor fixed-target program with LHCb
- Future
 - (Close) Analyse PbAr@69 GeV and pHe@87 GeV data samples
 - Record larger statistics (10 to 100 times) to access χ_c and ψ' (ψ' yield ~2% J/ ψ yield)