

Charmonia in Heavy Ion Collisions should we go back to SPS ?

– charmonia in A+A : the current (simplified) picture –

back to SPS : the CHIC picture

• Motivations

– Quarkonia suppression is a prediction of lattice QCD calculations, for instance :

state	$\mathrm{J}/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

H. Satz, J. Phys. G 32 (2006)

• Experimental setups

SPS/CERN – NA38, NA50, NA60 ($\sqrt{s_{NN}}$ = 17 – 30 GeV): fixed target experiments

- × Statistic :100 000's J/ψ
- Data sets : p+A w/ A=p, d, Be, Al, Cu, Ag, W, Pb; S+U, In+In, Pb+Pb
- Small rapidity coverage (typically $y_{CMS} \in [0,1]$)

RHIC/BNL – Phenix experiment ($\sqrt{s_{NN}}$ = 200 GeV): collider experiments

- Statistic : 1000's J/ψ (10000's since 2007)
- **Data sets :** p+p, d+Au, Cu+Cu, Au+Au
- **Large rapidity coverage (** $y_{CMS} \in$ [-0.5,0.5], $y_{CMS} \in$ [-2.2,-1.2] and $y_{CMS} \in$ [1.2,2.2])

LHC/CERN experiments ($\sqrt{s_{NN}}$ = 5,5 TeV): collider experiments

- Collider experiments
- **Statistic** : 100000's J/ψ
- Data sets : p+p, Pb+Pb, p+Pb
- ► Large rapidity coverage (|y_{CMS}|<2.5 ATLAS/CMS, |y_{CMS}|<0.9 and -4.0 < y_{CMS} < -2.5 ALICE)

CHIC Charmonia in A+A Envisionned mechanisms

• Sequential suppression in a QGP

inclusive J/ Ψ yield ~ 60% direct J/ Ψ + 30% $\chi_c \rightarrow J/\Psi + \gamma$ + 10% $\Psi' \rightarrow J/\Psi + \chi$

Recombination in a QGP

If QGP at work \rightarrow c and \overline{c} quarks can combine to form a J/ Ψ (require a large number of $c\overline{c}$ pairs \rightarrow RHIC ? LHC ?)

Charmonia in A+A Envisionned mechanisms

• Suppression by comovers (Alternative scenario)

- Suppression by comovers: (Eur.Phys.J.C58:437-444,2008)
 - quarkonia can be broken by interaction with comoving hadrons

Charmonia in A+A **Experimental highlights**

• SPS (17 GeV): NA38, NA51, NA50, NA60

Two major results :

- 1. Observation of Cold Nuclear Matter effects : Absorption by nuclear matter
 - Suppression observed from p+p to peripheral Pb+Pb
 - J/ ψ survival probability :

 $S(J\!/\,\Psi) \propto e^{-\rho\sigma_{abs}L}$

- Fit to data: **σ**_{abs}=**4.18** ±**0.35** mb
- Observation of Anomalous suppression in Pb+Pb (NA50) central collisions when compared with Cold Nuclear Matter effects.

Charmonia in A+A **Experimental highlights**

- RHIC (200 GeV) .vs. SPS (17 GeV)
 - 1. Hot and dense matter effects
 - Measure J/ Ψ in Au+Au (RHIC) Pb+Pb (SPS)
 - Compare at same rapidity (same y ~ same x_F)
 - 0<y<1 at SPS (NA50/NA60)
 - |y|<0.35 at RHIC (PHENIX)
 - Expected larger suppression at RHIC due to larger energy density
 - observe SIMILAR SUPPRESSION at mid rapidity
 - Observe LARGER SUPPRESSION
 at forward rapidity
 - 2. Cold Nuclear Matter effects at RHIC
 - Measure J/ Ψ production in d+Au collisions
 - Observe LARGER SUPPRESSION at forward rapidity (small x₂)
 - Pattern still not fully understood
 - Difference forward.vs.mid rapidity may explain larger suppression observed in forward Au+Au

Charmonia in A+A Experimental highlights

• RHIC (200 GeV) .vs. LHC (2.76 TeV) at forward rapidity

- Compare PHENIX vs ALICE
 - 1.2 < |y| < 2.2 at RHIC/**PHENIX**
 - 2.5 < y < 4 at LHC/ALICE
- LESS SUPPRESSION at LHC .vs. RHIC
- Could be due to recombination effects

RHIC (200 GeV) .vs. LHC (2.76 TeV) at mid-rapidity

- Compare PHENIX, STAR vs CMS
 - |y|<0.35 at RHIC/PHENIX
 - |y|<1 at RHIC/STAR
 - |y|<1 at LHC/CMS
- MORE SUPPRESSION at LHC .vs. RHIC
 - $p_T > 6.5 \text{ GeV/c} \rightarrow$ in principle no recombination applies
 - larger suppression due to QGP effects ?
- Hint of sequential suppression ? (J/Ψ melting)

Caution : Need CNM effects comparison

Charmonia in A+A The current picture

- Overall possible J/Ψ (simplified) picture
- Similar suppression at SPS.vs.RHIC 1. Ψ' and χ_c suppression only ?
- **CMS: Larger suppression** at LHC 2. pT>6.5 GeV/c \rightarrow « outside » recombination regime ?

Hint of sequential suppression ? (assuming CNM effects are the same or smaller)

ALICE |y|>2.5: Smaller suppression at LHC 3. « inside » recombination regime ? Hint of recombination ?

(assuming CNM effects are the same of larger)

Answers to these questions are mandatory :

- What are CNM effects at LHC?

Charmonia in A+A

- Shadowing should be large at forward rapidity
- Shadowing should be small at high p_T
- Resonance break-up cross section should be small
- Is recombination mechanism at work ?
 - If smaller suppression observed at mid-rapidity and low p_{τ}
- Is sequential suppression at work ?
 - Need several (at least two) resonances
 - Ψ is not a good probe because of comovers
 - Should measure χ_c

Key questions

Sequential suppression ?

• Measuring χ_c in A+A:

Back to SPS ?

- test charmonia sequential suppression
- How χ_c is suppressed relative to J/ Ψ ? Dependence with y, p_T , centrality?
- Mandatory to draw the whole picture (SPS .vs. RHIC .vs. LHC)
- Should measure χ_c at SPS. Why at SPS ?
 - If we understand SPS, we understand RHIC (same suppression)
 - Anomalous suppression has been seen at SPS
 - Appropriate range of energy density: can investigate Ψ' , χ_c and J/ Ψ suppression
 - On average, 0.1 cc pair/event

➡ No recombination at SPS

• Fixed target experiment ?

Can operate many target species

Better control of CNM effects

Charmonia suppression

04/05/2012 - RIL

Back to SPS ?

Charmonia suppression

• Two possible scenarios

Back to SPS ?

1. QGP (sequential suppression)

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass $[GeV]$	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Because ΔE (Ψ ') ~50 MeV

• Ψ' easily suppressed by comovers

Because $\Delta E(\chi_c)$ ~200 MeV and $\Delta E(J/\Psi)$ ~600 MeV • χ_c and J/ Ψ hardly suppressed by comovers

If χ_c suppressed by QGP,

• χ_{c} slope strongly steeper than J/ Ψ and Ψ^{\prime}

Measuring χ_c suppression pattern will (in)validate this

Note that direct J/ Ψ can be experimentally estimated Yield_{incl.J/ Ψ} – Yield_{$\chi c \rightarrow J/\Psi + \gamma$} – Yield_{$\Psi'$} ~ Yield_{direct J/ Ψ}

Charmonia suppression

• Two possible scenarios

2. No QGP (full comovers)

Back to SPS ?

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Because $\sigma_{\text{J/}\Psi\text{-co}} \leq \sigma_{\chi\text{c-co}} \leq \sigma_{\Psi^{\prime}\text{-co}}$

- Ψ^{\prime} slope slightly steeper than χ_{c}
- χ_c slope slightly steeper than J/ Ψ

Measuring

 χ_c suppression pattern will (in)validate this

Note that direct J/ Ψ can be experimentally estimated Yield_{incl.J/ Ψ} – Yield_{$\chi c \rightarrow J/\Psi + \gamma$} – Yield_{$\Psi'$} ~ Yield_{direct J/ Ψ}

- Measuring χ_c
- **Conclusion :** 2 Measured / Expected Eur.Phys.J.C49:559-567,2007 J/ψ / DY_{4.2-7.0} Pb(208 x 158 GeV/c)-Pb S(32 x 200 GeV/c)-U ۲ p(450 GeV/c, LI)-A ¢ p(450 GeV/c, HI)-A p(400 GeV/c, VHI)-A p+A measuring S+U Pb+Pb Ψ' , J/ Ψ and χ_c suppression pattern 1 No QGP Xc 0.8 will answer the question ψ / DY4.2-7.0 0.6 Pb(208 x 158 GeV/c)-Pb ----- QGP 0.4 S(32 x 200 GeV/c)-U ----- no QGP # p(450 GeV/c, LI)-A 0.2 ▲ p(450 GeV/c, HI)-A p(400 GeV/c, VHI)-A 0 9 5 6 8 10 0 L (fm) Note that direct J/ Ψ can be experimentally estimated L (fm) 4.37 4.90 6.65 7.65 8.83 9.43 $\text{Yield}_{\text{incl},J/\Psi} - \text{Yield}_{\chi_{c} \rightarrow J/\Psi + \gamma} - \text{Yield}_{\Psi'} \sim \text{Yield}_{\text{direct},J/\Psi}$ ε (GeV/fm³) 1.04 1.24 2.04 2.53 3.19 3.76

Back to SPS Charm In Heavy Ion Collisions

- Primary goals :
 - $\chi_c \rightarrow J/\Psi + \gamma \rightarrow \mu^+ \mu^- \gamma$ at $y_{CMS} = 0$
 - $J/\Psi \rightarrow \mu^+ \mu^-$ in large y_{CMS} range
- Detector features : very compact

1. Spectrometer

- Measure tracks before absorber $\Rightarrow \sigma_{\rm M}^{\rm \sim} 20 \ {\rm MeV/c^2}$
- Covers y_{CMS} [-0.5, 2] \rightarrow need high segmentation
- ➔ Silicon technologies

2. Calorimeter

- Measuring γ in high π^0 multiplicity environment
- → ultra-granular EMCal (Calice)
- 3. Absorber/trigger
 - Using 4.5 m thick Fe to absorb π/K and low P $\mu^{\text{+/-}}$
 - Can use smaller absorber if Fe magnetized
 - Trigger to be defined (expected rate = 0.3 kHz)

Expected performances

$$\frac{\Delta P}{P} \sim 1\%$$
 within 1 m long 2.5T \vec{B}

2. Calorimetry :

$$\frac{\Delta E}{E} \sim \frac{20\%}{\sqrt{E}}$$

Back to SPS Charm In Heavy Ion Collisions

CHIC: Experimental setup flexibility

Very compact detector (full detector simulation ongoing)

Forward rapidity

Large rapidity coverage

- fixed target mode \rightarrow high flexibility
- displace tracker to access large rapidity
- modify calorimeter to access large rapidity

04/05/2012 - RIL

Charm in Heavy Ion Collisions **Signal extraction**

- Typical mass plots
 - 200 000 Pb+Pb minBias EPOS events
 - 140 000 events with J/ Ψ embedded (70%)
 - 60 000 events with χ_c embedded (30%)

After acceptance and selection cuts:

• 35 000 J/Ψ → acc x eff = 17.4%

•1700 χ_c → acc x eff = 2.8 %

Charm in Heavy Ion Collisions Figure of Merit

- Typical one month Pb+Pb run with a 4mm thick target
 - − ~ 200 000 inclusive J/ $\Psi \rightarrow \mu^+ \mu^-$ expected

Second Second S

Conclusion

- Core benchmark : unique test of χ_c in heavy ion collisions
- What we didn't discuss :
 - CHIC p+A program
 - 9 months of proton beam available to be compared to the usual one month
 - capability to access $x_F = 1$
 - physics of saturation : shadowing, CGC, energy loss (Arléo, Peigné)
 - charmonium hadronisation time
 - charmonium absorption cross section
 - Drell-Yan studies
 - Open charm studies
 - Charged/neutral hadrons studies
 - Photons studies
 - Low mass dileptons

Backup slides

Frédéric Fleuret - LLR

• Sequential suppression in a QGP

Backup

Backup

• Sequential suppression by comovers

(Eur.Phys.J.C58:437-444,2008)

Suppression by comovers:

Backup

 quarkonia can be broken by interaction with comoving partons/hadrons

$$\tau \frac{\mathrm{d}N_{J/\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma_{co} N^{co}(b, s, y) N_{J/\psi}(b, s, y)$$

- Two parameters
 - Hadron density N^{co}
 - Interaction cross section σ_{co}

 $\tau \frac{\mathrm{d}N_{J/\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma_{co} N^{co}(b, s, y) N_{J/\psi}(b, s, y)$

- Sequential suppression by comovers
 - Suppression by comovers:
 - quarkonia can be broken by interaction with comoving partons/hadrons
 - Two parameters
 - Hadron density
 - Interaction cross section σ_{co}
 - There is a hierarchy in the suppression
 - σ_{co} is linked to the quarkonium binding energy
 - The larger the binding energy, the smaller the σ_{co}
 - But $\sigma_{\rm co}$ is theoretically unknown (must be fitted on the data)
 - Sequential suppression
 - $\Delta E(J/\Psi) > \Delta E(\chi_c) > \Delta E(\Psi')$

 $\clubsuit \sigma_{\text{J/}\Psi\text{-co}} \leq \sigma_{\text{\chic-co}} \leq \sigma_{\Psi^{\prime}\text{-co}}$

Quarkonium bindind energy ($\Delta E = M_{quarkonium} - 2M_D$)

• Sequential suppression by comovers Eur.Phys.J.C58:437-444,2008

If comovers at work **→** smooth suppression

(reminder: If QGP at work → threshold effect)

Backup

Experimentally,

 \succ Ψ' suppression pattern slightly steeper than J/Ψ one (theoritically $\sigma_{J/\Psi-co} ≤ \sigma_{\Psi'-co}$)

➢ If comovers at work,

 χ_{c} suppression pattern should stand within Ψ' and J/ Ψ suppression patterns

Conclusion

Need to measure χ_c pattern to test comovers scenario

• Benchmark 2: Measure charmonium in p+A at SPS

J/ Ψ and Ψ ' **suppression** in p+A collisions as a function of L

Backup

➔ Measuring different charmonium states gives key information on Cold Nuclear Matter and production mechanism.

J/ Ψ rapidity distribution in p+A collisions (asymetry wrt y_{cm}=0)

➔ Measuring charmonium in a wide x_F range is important to identify possible (anti)shadowing effects

CHIC Backup

• Measure charmonium in p+A at SPS

➔ Measuring charmonium in a wide x_F range is important to estimate possible (anti)shadowing effects

$$\sigma_A = \sigma_p * A^o$$

E866, Phys. Rev. Lett. 84, 3256-3260 (2000)

$$x_F = \frac{2M}{\sqrt{s}} \sinh y_{CMS}$$

With M=3.1 GeV/c² and $\sqrt{s=17.2 \text{ GeV}}$ (158 GeV) $x_F = 1 \rightarrow y_{CMS} = 1.7$

With M=3.1 GeV/c² and $\sqrt{s=29.1 \text{ GeV}}$ (450 GeV) $x_F = 1 \rightarrow y_{CMS} = 2.2$ $Y_{CMS}=2 \rightarrow x_F = 0.8$

Possible to access large x_F if measuring charmonia at rapidity up to y_{CMS} ~2

fixed target.vs.collider mode Backup

- **Cold Nuclear Matter studies**
 - Must be performed in p+A collisions
 - The more A versatility, the better

Collider mode

- Difficult to operate many A systems (for instance, since 2000, Phenix operated d+Au collisions only) \rightarrow studies as a function of centrality
- Constraints:
 - **Centrality bin limitation**: due to the 1. "small" number of particle produced in p+A, cannot make as many centrality bins as in A+A collisions
 - 2. Glauber uncertainty :

<N_{coll}>.vs.centrality through Glauber calculation \rightarrow uncertainty on $\langle N_{cou} \rangle$ (~7% for Phenix)

- Fixed target mode
 - Easy to operate many A systems
 - No bin limitation
 - No Glauber uncertainties

Collid	er mode:		
$R_{pA} =$	$\frac{dN_{\text{pA}}^{J/\Psi}}{\left\langle N_{\text{coll}}\right\rangle dN_{\text{pp}}^{J/\Psi}}$	$\times \frac{dN_{p_{f}}^{M}}{dN_{p_{f}}^{M}}$)

.

11. 1

	centrality	<n<sub>coll></n<sub>
MB	0-20%	15.1 ± 1.0
pp MB	20-40%	10.2 ± 0.7
рА	40-60%	$\textbf{6.6} \pm \textbf{0.4}$
	60-88%	$\textbf{3.2}\pm\textbf{0.2}$

