

SMOG data and heavy flavors

nucleus-nucleus : Quark Gluon Plasma proton-nucleus : Cold Nuclear Matter

Quark Gluon Plasma w/ Charm quarks

- Experimentally, charmonium is a priviled ged probe of QGP $(m_c \gg T_c)$
 - QGP phase shouldn't modify the overall heavy quark yields
 - QGP phase should modify relative (hidden/open) heavy quark bound state yields Charmonium production in A+A collisions studied at:
 - CERN-SPS (√s=17 GeV)
 - BNL-RHIC (√s=200 GeV) •
 - CERN-LHC
 - Short summary for J/ Ψ :
 - NA50 (PbPb@SPS)

- NA38, NA50, NA60 experiments
- PHENIX, STAR experiments
- $(\sqrt{s}=2.76, 5 \text{ TeV})$ ALICE, CMS experiments
 - observed an *anomalous* J/Ψ suppression
- PHENIX (AuAu@RHIC)
 - observed a *similar* suppression (than NA50)
- ALICE (PbPb@LHC)

Possible Color screening starting at SPS

- Color screening in a QGP decreases quarkonium binding
- Color screening should lead to a suppression of quarkonium production yields

Possible recombination occuring at LHC

- at sufficiently high $\sqrt{s_{NN}}$, heavy quarks are abundantly produced.
- After thermalisation, statistical combination can lead to an enhancement of guarkonium production yields

• What next to be done with charmonium

To confirm (and study) charmonium color screening and recombination, one must compare charmonium and open charm production in A+A collisions

- Since most of the produced cc pairs hadronize into open charm (~90%), open charm production reflects the original cc pair production
- Open charm is therefore an (the?) appropriate reference to calibrate charmonium screening/recombination studies.

– Charmonium recombination : > 1 TeV

- Both J/ Ψ and open charm will be measured in PbPb at large energy densities at LHC

→ Best place to study charmonium recombination <u>≥</u>

– Charmonium screening : < 100 GeV</p>

- At SPS energies, in Pb+Pb collisions, J/Ψ suppression occurs in the middle of the accessible energy density range
- ➔ Best place to study color screening
- Needs measurement of open charm yields
- Needs precise measurements of several *cc* states to test if color screening leads indeed to a sequential suppression

• Can be studied in fixed-target mode at LHC

− 2.75 TeV Pb beam on fixed target $\rightarrow Vs_{NN} \sim 71 \text{ GeV}$

- PbAr@71 GeV .vs. PbPb@17 GeV
 - Multiplicity is related to event centrality and center-of-mass energy
 - Multiplicity can be used to compare different A+B collisions at different $\sqrt{\mathrm{s}_{\mathrm{NN}}}$

System \ centrality	60 – 100%	50 – 60%	40 – 50%	30 – 40%	20 – 30%	10 – 20 %	0-10%
PbNe – 71 GeV	108.6	254.4	392.5	588.0	814.5	1086.0	1494.9
PbAr – 71 GeV	123,6	308,8	496,5	806,6	1228,3	1711,9	2372,7
PbKr – 71 GeV	196,9	533,6	919,1	1451,2	2205,5	2986,6	4084,3
PbPb – 17 GeV	124,2	331,6	605,9	919,6	1338,7	2035,8	2980,5

- PbAr @ 71 GeV multiplicity \equiv PbPb@17 GeV multiplicity

→ PbAr @ 71 GeV is a good starting point to compare with NA50 (SPS)

Cold Nuclear Matter w/ Charm quarks

- A thorough p+A program is mandatory to study Cold Nuclear Matter effects
 - as a reference to study Hot Nuclear Matter effects (QGP)
 - nPDF, saturation, energy loss, nuclear absorption, ...
- LHCb offers a unique opportunity to measure several quarkonium states (J/ ψ , ψ' , χ_c) as well as several open charm states (D⁰, D^{+/-}, D_S, λ_c ,...)
- LHCb offers a large rapidity coverage (~3 rapidity units) at large bjorken-x x₂
 - Give access to **nPDF anti-shadowing** region and **intrinsic charm** content in the nucleon

Injecting gas in LHCb Vertex Locator (VELO) region

- Primary role : luminosity measurement
- Can be used as an internal gas target
- Noble gas only : (very low chemical reactivity)
 - He (4), Ne (20), Ar (40), Kr (84), Xe (131)
 - Gaz pressure : 10⁻⁷ to 10⁻⁶ mbar

Fixed-target program

Data – fixed-target mode

• Data recorded in 2015

- Gas pressure in the velo : ~ $1 2 \ 10^{-7}$ mbar
 - pHe : ~7h @110 GeV w/ 299 non-colliding bunches in september
 - pNe : ~12h @110 GeV w/35 non-colliding bunches in august
 - pAr : ~ 17h @ 110 GeV w/685 non-colliding bunches in october (available for analysis)
 - pAr : ~11h @ 69 GeV w/44 non-colliding bunches in november
 - PbAr : ~100h @ 69 GeV w/ 500 non-colliding bunches in december (not yet available for analysis)
- Data recorded in 2016
 - pHe : ~87h @ 87 GeV : statistic ≡ pAr data (not yet available for analysis)
- Presented here : pAr @ 110 GeV (analysis under internal review)
 - Very preliminary results on heavy flavor production with SMOG
 - Luminosity not available yet
 - Study J/ ψ and D⁰ production in $\sqrt{s_{NN}}$ =110 GeV proton-argon collisions as a demonstration of feasibility of the heavy- flavor LHCb fixed-target program

pAr data @ 110 GeV

- 17h of pAr collisions with 685 non-colliding bunches
- Select events with Beam 1 only at interaction point
- Apply topological cuts to remove possible ghost charge pollution
- Select events with Z_{vertex} inside VELO

 $Z_{vertex} \in [-20 \text{ cm} : 20 \text{ cm}]$

Signal extraction

Dreliminary J/ψ and D⁰ : Crystal ball functions to extract the signal

- Overall data (18h) : ~500 J/ ψ ~6500 D⁰

J/ψ and D⁰ differential production

Dreliminary pT bins \in [0, 600] – [600, 1200] – [1200, 1800] – [1800, 8000] MeV/c

08/01/2017

- Transverse momentum distributions
 - J/ψ and D^0 data and MC distributions are normalized

comparing data (blue points) with PYTHIA (red boxes) yields

Preliminan

 J/ψ and D⁰ differential production

• Rapidity bins : [2, 3] – [3, 3.5] – [3.5, 4] – [4, 4.6]

Dreliminary

- Rapidity distributions
 - J/ψ and D^0 data and MC distributions are normalized

- Comparing data (blue points) with PYTHIA (red boxes) yields

Preliminan

• J/ Ψ / D⁰ ratio . VS. Rapidity

- No significant dependence of $\frac{J/\psi}{D^0}$ with rapidity

Dreliminan

Bjorken-x and Feynman-x

08/01/2017

pAr @ 110 GeV

Other possible measurements

Conclusion

- First analysis of heavy-flavor production with SMOG
 - − Study J/ ψ → $\mu^+\mu^-$ and D⁰→Kπ production in pAr@110 GeV
 - Collected overall ~500 J/ ψ and ~6500 D⁰
 - Cover large Bjorken-x x₂ and negative feynman-x x_F
- Demonstrate the feasibility of the SMOG heavy flavor program

- To start physics, need
 - More systems (He,...)
 - Larger statistics (10 to 100 larger)
 - get χ_c and ψ' (ψ' yield ~ 2% J/ ψ yield), investigate Ξ_{cc}^+ production
 - With optimal beam conditions can get x10 with 48h data taking