AFTER/CHIC experimental connections

Two different physics cases with a common apparatus concept

AFTER@LHC : experimental constraints
 CHIC@SPS : experimental design

AFTER @ LHC – Physics

- Idea : use LHC beam on fixed target
- 7 TeV proton beam (\ssss ~115 GeV)
 - *p+p, p+A*
- 2.75 TeV Pb beam (√s ~72 GeV)
 - *Pb+A, Pb+p*
- High boost and luminosity giving access to
- QCD at large x
- nPDF and nuclear shadowing
- QGP
- Spin physics
- Other ?

See Stan's talk

AFTER @ LHC – Beam extraction

Available online at www.sciencedirect.com

Beam extraction @ LHC

Si or Ge (W would perform slightly better but needs substantial improvements in crystal quality) at a distance of $\simeq 7\sigma$ to the beam where it can intercept and deflect part of the beam halo by an angle similar to the one the foreseen dump kicking system will apply to the circulating beam.

F. Fleuret - LLR

AFTER @ LHC – p+A Luminosity

• Intensity: expect 5.10⁸ protons.s⁻¹

- Beam: 2808 bunches of 1.15x10¹¹ protons = 3.2x10¹⁴ protons
- Bunch: Each bunch passes IP at the rate: 3.10⁵ km.s⁻¹/27 km ~ 11 kHz
- Instantaneous extraction: IP sees 2808 x 11000~3.10⁷ bunches passing every second
 → extract 5.10⁸/3.10⁷ ~ extract 16 protons in each bunch at each pass
- − Integrated extraction: Over a 10h run: extract 5.10^{8} p x 3600s.h⁻¹ x 10h=1.8 10¹³p.run⁻¹ → extract 1.8 x 10¹³/(3.2 x 10¹⁴)~5.6% of the protons stored in the beam

Instantaneous Luminosity

- $\mathcal{L} = \mathbf{N}_{\text{beam}} \times \mathbf{N}_{\text{Target}} = \mathbf{N}_{\text{beam}} \times (\rho \times \mathbf{e} \times \mathcal{N}_{\text{A}}) / \mathbf{A}$
- N_{beam}=5 X 10⁸ p⁺/s
- e (target thickness) = 1 cm
- Integrated luminosity
 - 9 months running/year
 - → 1year ~ 10⁷ s
 - $\quad \clubsuit \int_{\text{year}} \mathcal{L} = \mathcal{L}_{\text{inst}} x 10^7$

/A	Targ	ρ (g.cm ⁻³)	Α	ℒ _{inst} (μԵ ⁻¹ .s ⁻¹)	∫ _{year} ℒ (pb⁻¹.y⁻¹)
1 cm thick target	Liq H	0.068	1	20	200
	Liq D	0.16	2	24	240
	Ве	1.85	9	62	620
	Cu	8.96	64	42	420
	W	19.1	185	31	310
	Pb	11.35	207	16	160

AFTER @ LHC – p+A Luminosity

- Typical numbers
 - J/Ψ @ √s=115 GeV
 - σ_Ψ ~ 1.5 10³ nb
 - → $\operatorname{Br}_{\Psi o e^+e^-} d\sigma_{\Psi}/dy(y=0) \sim 30 \text{ nb}$

 10^4 * pp 0 pA 10^3 • HERA-B 10^2 • HERA-B 10^2 • 10^2

J/w total cross section

– Ύ @ √s=115 GeV

• $Br_{\Upsilon \rightarrow e+e} d\sigma_{\Upsilon} / dy(y=0)@ 115 \text{ GeV} ~ 50 \text{ pb}$

	Target	ρ (g.cm ⁻³)	Α	<i>上</i> (µb ⁻¹ .s ⁻¹)	<i>上</i> (pb ⁻¹ .y ⁻¹)	N _{J/Ψ} _{y=0} (y ⁻¹) _{N_{J/Ψ} = ALσ_Ψ}	N _Υ _{y=0} (y ⁻¹) _{N_Y = AL_{σ_Y}}
arget	Liq H	0.068	1	20	200	6 10 ⁶	1. 10 ⁵
	Liq D	0.16	2	24	240	1.4 10 ⁷	2.4 10 ⁵
nick 1	Ве	1.85	9	62	620	1.6 10 ⁸	2.8 10 ⁵
cm tl	Cu	8.96	64	42	420	8.1 10 ⁸	1.3 10 ⁶
th 1	W	19.1	185	31	310	1.7 10 ⁹	2.9 10 ⁶
Ň	Pb	11.35	207	16	160	1. 10 ⁹	1.7 10 ⁶

AFTER @ LHC – Pb+Pb Luminosity

• Intensity: expect 7.10⁵ Pb.s⁻¹

- Integrated luminosity
 - 1 month running/year
 - → 1year ~ 10⁶ s
 - $\rightarrow \int_{\text{year}} \mathcal{L} = \mathcal{L}_{\text{inst}} \times 10^6$

Target	ρ (g.cm -³)	Α	£ (mb ⁻¹ .s ⁻¹)=∫⊥ (nb ⁻¹ .yr ⁻¹)
Liq. H ₂	0.07	1	28
Liq. D ₂	0.16	2	34
Be	1.85	9	84
Cu	8.96	64	56
W	19.1	185	42
Pb	11.35	207	22

• Typical numbers : PHENIX @ RHIC recorded in 2010

- Au+Au @ 200 GeV: 1.3 nb⁻¹
- Au+Au @ 62 GeV: 0.11 nb⁻¹

AFTER @ LHC - Pseudorapidity

 $\eta^* = \eta - y_{CMS}$ forward region: $\eta^* > 0$ backward region: $\eta^* < 0$

- Very high boost:
- With 7 TeV beam : $\gamma = 61.1$
- With 2.75 TeV beam: γ = 38.3
- Very well placed to access backward physics

• Note: taking $x_2 = M/\sqrt{s} e^{-y}$ $- x_2(J/\Psi) = 1 \Rightarrow y_{J/\Psi} \sim -3.6$ $- X_2(Y) = 1 \Rightarrow y_Y \sim -2.4$

AFTER @ LHC – Multiplicity

Number of charged particles/rapidity unit

 $(1.5 \times \sim charged+neutral)$

- p+p @ 115 GeV ~ 2
- d+Au @ 200 GeV: max~11
- Au+Au @ 62.4 GeV: max~450

F. Fleuret - LLR

AFTER @ LHC – Detector

- Typical detector: -3.5 < y_{cms} < 0
- Multipurpose detector:
 - Vertex
 - Tracking
 - Calorimetry
 - Muons
- Compact detector
 - Because of the high boost, the detector must be as compact as possible
 - Need ultra-granular technologies

AFTER @ LHC – Detector

• Dimension

Detector	Z _{min} /Z _{max}	R _{min} /R _{max}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Vertex	40/50 cm	0.5/35 cm	$ \begin{array}{c} $
Tracker	50/150 cm	0.8/90 cm	9 η*= 2 vertex η*= 3 η*= 4
EMCal	150/170 cm	2/100 cm	adial dis
Hcal	170/270 cm	2.5/160 cm	- 15_mm
muons	270/470 cm	4/300 cm	74.5 m 10 ⁻¹ 1 10 ⁻¹ 10 ² 10 ³ 10 ⁴ 10 ⁴
			iengitaannar alotanoo to the vertex (eni)

AFTER @ LHC – Conclusion

• Wide physics case

- QCD at large x
- nPDF and shadowing
- QGP
- Spin
- Other?

• Up to 7 TeV beam

- very high boost
- need ultra-granular (new) technologies

• Connection with the CHIC experiment @ SPS

- Physics : QGP, nPDF and shadowing
- The CHIC @SPS experiment also needs ultra-granular technologies
- Take advantage of the CHIC expertise to design AFTER

CHIC @ SPS – Physics case

Mandatory to draw the whole picture (SPS .vs. RHIC .vs. LHC)

Goal: measure $\chi_c \rightarrow J/\Psi \gamma \rightarrow \mu^+ \mu^- \gamma$ within $y_{cms} \in [-0.5, 0.5]$ Challenge: measure χ_c 's γ in a high π^0 multiplicity environment

2. Measure charmonia production in p+A

what is the depence of charmonia suppression with rapidity @SPS energies? Crucial to understand effects due to cold nuclear matter

Goal : measure charmonia within $y_{cms} \in [-0.5, 2]$

(See Tuesday talk)

CHIC @ SPS – experimental setup

CHIC @ SPS – Tracking

The NA60 pixel detector

CHIC @ SPS – Calorimetry

• Need very high segmentation

- Expect up to ~400 photons/rapidity unit
- Need to separate two electromagnetic showers
- Need to isolate photons from $\pi^{+/-}$ contamination

• W + Si calorimeter à la Calice

- 30 layers
- 0.5 x 0.5 cm² pads
- 24 X₀ in 20 cm
- $\Delta E/E \sim 20\% / \sqrt{E}$

• W+Si : two relevant quantities

– Distance between 2 incoming particles: at least one free pad

$$\begin{cases} R_{\rm M} = X_0 \frac{21 \,\text{MeV}}{610 \,\text{MeV}/(Z+1.24)} \\ X_0 = \frac{716.4 \times \text{A g.cm}^{-2}}{Z(Z+1) \ln(287/\sqrt{Z})} \Rightarrow R_{\rm M}(W) = \frac{17.6 \,\text{g.cm}^{-2}}{19.25 \,\text{g.cm}^{-3}} \approx 0.9 \,\text{cm}^{-3} \end{cases}$$

Set detector position according to event multiplicity
at CHIC: z_{calo} ~ 2m

CHIC @ SPS – Calorimetry

• Full simulation performed with the Calice Ecal proto

3 photons with E~2 GeV distance between each photon~ 2 cm

(full simu made by D. Jeans - Calice collab.)

0.5 x 0.5 cm² pads

CHIC @ SPS – Absorber

• Absorber type

NA50/NA60 : measure muon momentum after the absorber

→ must minimize multiple scattering

- Must use low Z material: best = BeO (but expensive)
- NA50 : 0.6 m BeO + 4 m C + 0.6 m Fe = 5.2 m

CHIC : measure muon momentum before the absorber

- → minimization of multiple scattering not crucial
- \rightarrow can use Fe material To absorb $\pi^{+/-}$

Need to **match muon track position** between spectrometer and trigger : **Use an instrumented Fe absorber**

Can match muon track momentum between spectrometer and trigger : Use magnetized Fe absorber ?

CHIC @ SPS – Overall design

• Primary goals :

- $\chi_c \rightarrow J/\Psi + \gamma \rightarrow \mu^+ \mu^- \gamma$ at $y_{CMS} = 0$
- $J/\Psi \rightarrow \mu^+ \mu^-$ in large y_{CMS} range

• Detector features : very compact

- 1. Spectrometer
 - Measure tracks before absorber $ightarrow \sigma_{\rm M}^{\sim} 20~{\rm MeV/c^2}$
 - Covers y_{CMS} [-0.5, 2] \rightarrow need high segmentation
 - → Silicon technologies

2. Calorimeter

- Measuring γ in high π^0 multiplicity environment
- → ultra-granular EMCal (Calice)
- 3. Absorber/trigger
 - Using 4.5 m thick Fe to absorb π/K and low P $\mu^{\text{+/-}}$
 - Can use smaller absorber if Fe magnetized
 - Trigger to be defined (expected rate = 0.3 kHz)

Expected performances

1. tracking: $\frac{\Delta P}{P} \sim 1\%$ within 1m long 2.5T \vec{B}

2. Calorimetry : $\frac{\Delta E}{E} \sim \frac{20\%}{\sqrt{E}}$

CHIC @ SPS – Performances

• χ_{c2} in p+p collisions at $\sqrt{s=17.8 \text{ GeV}}$

- Sample:

- 20 kevents with Pythia 6.421
- $1 \chi_{c2} \rightarrow J/\Psi \gamma \rightarrow \mu^+ \mu^- \gamma$ per event
- Smearing $\Delta P_{\mu}/P_{\mu} = 1\%$
- Smearing $\Delta E_{\gamma}/E_{\gamma} = 20\%/\sqrt{E_{\gamma}}$

- Selections :

- Keep muons w/ -0.5 < y_{cms} < 0.5
- Keep muons w/ P_z > 7 GeV
- Keep muons w/ z_{vertex} < 215 cm
- Keep photons w/ $-0.5 < y_{cms} < 0.5$
- Reject photons w/ $M_{\gamma\gamma} \in [100, 160] \text{ MeV/c}^2$
- Results : signal/bkg = 2.8
- χ_{c2} in Pb+Pb at $\sqrt{s}=17.8$ GeV
- Sample:
 - 10 kevents minbias with Epos 1.6
 - 1 pythia χ_{c2} embedded in each event
 - Same selections as in p+p
 - Reject γ if not in the same hemisphere as J/Ψ
 - Results : signal/bkg = 3.6

AFTER/CHIC - Conclusion

- **CHIC**: (contact : F. Fleuret)
 - Very strong physics case : measure χ_c in Pb+Pb collisions @ SPS energies
 - not done in the 90's-00's because needed technologies not available at that time
 - Today, ultra-granular technologies are mature
 - Measuring χ_c in Pb+Pb collisions is now doable
 - Contact: F. Fleuret (<u>fleuret@in2p3.fr</u>) LLR, Elena Ferreiro Santiago

• AFTER :

- Wider physics case (QCD at large x, nPDF, nuclear shadowing, QGP, spin physics)
- Up to 7 TeV beam, very high boost, need ultra-granular technologies
- Take advantage of the CHIC expertise to design AFTER
- Contact: J.-P. Lansberg (<u>lansberg@in2p3.fr</u>) IPNO, S. Brodsky SLAC, F. Fleuret LLR, C. Hadjidakis IPNO

• Timescale and plans :

- July 7th 2011 : one-day meeting
- October 2011 :
 - Draft of a Letter Of Intent for CHIC to be submitted to SPS-C by the end of the year.
 - GDR-QCD meeting.
- December 2011 : CHIC/AFTER ANR calls for proposal
 - simulations for CHIC (experimental)/AFTER (physics)
- 2012 : AFTER expression of interest