

Cold Nuclear Matter effects at RHIC

Data samples

Yand J/ Ψ results

Results against CNM predictions

Phenix empirical approach

STAR & PHENIX

Data: 1st d+Au run in 2003

Extrapolation from d+Au to Au+Au for J/ Ψ mandatory to measure HDM effects

Effect of the J/ Ψ production mecanism Extrinsic pT (2 \rightarrow 2) .vs. Intrinsic (2 \rightarrow 1)

• D		ovar	mnl	\sim					
· FILMA Example					Campagne	Espèces	Énergie (GeV)	Luminosité intégrée (Phenix)	
~30 times larger statistic in 2008 .vs. 2003					2000/2001	Au+Au	130	1,0 μb ⁻¹	
			PHENIX run 3			2001/2002	Au+Au p+p	200 200	24,0 μb ⁻¹ 0,15 pb ⁻¹
1		Ĩ] ←			2002/2003	d+Au	200	2,74 nb-1
Ē	I I					2000 /200 A	р+р	200	0,35 pb ⁻¹
ی ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲						2003/2004	Au+Au Au+Au	200 62	241 μb ⁻¹ 9 μb ⁻¹
			-	better precision for J/ Ψ		2004/2005	Cu+Cu	200	3 nb ⁻¹
							Cu+Cu Cu+Cu	22.5	0,19 hb ⁻ 2,70 μb ⁻¹
	+11% Clobal Scala	-	inst me	asurement of I		p+p	200	3,80 pb ⁻¹	
0 <u>-</u> 3	-2 -1 0 Rapidity	1 2] 3	T		2005/2006	р+р р+р	200 62	10,7 pb ⁻¹ 0,1 pb ⁻¹
	8 ^{1.1}					2006/2007	Au+Au	200	810 μb ⁻¹
			****		PHENIX run 8	2007/2008		200	00 mb-1
	د ⁴ 0.9	<u> </u>					а+Аи р+р	200	80 nb ⁻¹
	0.8	₽ ₽	Ī	Ť • • Ť		2008/2009	р+р р+р	200 500	8,6 pb ⁻¹ 13 pb ⁻¹
	0.6 0.5 .4	J/ψ at√s _{NN} = 20	0 GeV			2009/2010	Au+Au Au+Au Au+Au	200 62 39	1,3 nb ⁻¹ 0,11 nb ⁻¹ 40 μb ⁻¹
	0.3 ^[] .	Giobal Scale -2 -1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	™ 1 2 ×	3		Au+Au	7,7	0,26 μb ⁻¹

L

Y : first measurement in d+Au

• Made by both STAR and PHENIX (run 2008)

Cnrs

J/ Ψ measurement in dAu 2008

Cnrs

CNM measurement

• PHENIX : R_{dAu}

Production mecanism = intrinsic p_T : R. Vogt, Phys. Rev. C71, 054902 (2005) Gluon saturation : D. Kharzeev and K. Tuchin, Nucl. Phys. A735, 248 (2004)

> Intrinsic $p_T \rightarrow$ reasonable agreement Gluon saturation miss mid y

arXiv: 1010.1246 « find a reasonable agreement within uncertainties with the unbiased R_{dAu} data »

CNM measurement

CNM measurement

Frédéric Fleuret - LLR

Phenix Empirical approach

- Phenix ArXiv:1010.1246
- goal : explore the centrality and rapidity dependence of the nuclear effects

As a function of centrality in d+Au : given r_T = transverse radius of the NN collisions wrt the center of Au nucleus

Empirical parametrization of CNM: $R_{dAu}(r_T) = M(r_T)$

- linear \rightarrow inhomogenous shadowing
- exponential \rightarrow absorption
- Quadratic → energy loss

How it works : inhomogenous shadowing ightarrow

Shadowing

- Homogenous shadowing
- Starting point
 - Shadowing parametrizations are given as a function of x, Q² and A
 - All integrated in b (impact parameter)
 - no spatial dependence available
 - not possible to study shadowing as a function of centrality
- Idea
 - Proposed by R. Vogt and S.R. Klein (2003)
 - See Phys. Rev. Lett. 91 142301 (2003)
 - « we discuss how the shadowing and its spatial dependence may be measured ... We find that inhomogenous shadowing has a significant effect on central dA collisions »

Pb / gluons in p

gluons in

Inhomogenous shadowing

The shadowing part

Inhomogenous shadowing : (on MC basis)

$$\sigma_{J/\Psi}^{pp \text{ in } A} = \sigma_{J/\Psi}^{pp \text{ in vacuum}} \times \left(1 + \left(\left(R_g(x, Q^2, A) - 1 \right) \times \frac{\text{number of overlapping nucleons}}{\left\langle \text{number of overlapping nucleons} \right\rangle} \right) \right)$$

PRL91:« the incident parton interacts coherently with all the target partons along its path length »

Cnrs

Inhomogenous shadowing

• Back to PHENIX arXiv:1010.1246

$$\sigma_{J/\Psi}^{pp \text{ in } A} = \sigma_{J/\Psi}^{pp \text{ in vacuum}} \times \left(1 + \left(\left(R_g(x, Q^2, A) - 1 \right) \times \frac{\text{number of overlapping nucleons}}{(\text{number of overlapping nucleons}} \right) \right) \right)$$
The density weighted longitudinal thickness
$$\Lambda(r_T) \equiv \frac{1}{\rho_0} \int dz \, \rho(z, r_T)$$

Shadowing -> Linear dependence with longitudinal thickness

Phenix empirical approach

Frédéric Fleuret - LLR

Phenix empirical approach

Parametrizations against data

Backward and mid-rapidity points agree within uncertainties for the three cases presented here.

Forward rapidity points require the suppression to be stronger than exponential or linear with the thickness.

Cautious, this picture can be misleading

- backward rapidity \rightarrow anti shadowing
- → a_{shadowing} < 0
 need nuclear absorption to fit the data

 $\rightarrow a_{abs} > 0$

Summary

Conclusion

- New data available
 - 30 times more statistic in run 2008 .vs. 2003
 - First $\mathsf{R}_{\mathsf{dAu}}$ for Y
 - High statistical sample for J/ Ψ
- Results
 - Data may indicate some energy loss in forward rapidity region
 - Should come in the future :
 - $J/\Psi R_{dAu}.vs.p_T$
 - J/ ΨR_{dAu} .vs.N_{coll}