Transverse momentum dependence of J/Ψ shadowing effects in $\sqrt{s_{NN}}=200$ GeV d+Au collisions at RHIC (and its consequences in Au+Au)

INTRINSIC AND EXTRINSIC P_T EFFECTS ON J/ Ψ SHADOWING

This work, on behalf of

E. G. Ferreiro F. Fleuret J.-P. Lansberg A. Rakotozafindrabe

Work in progress...

$$R_{dAu} = \frac{dN_{dAu}^{J/\Psi}}{\left\langle N_{coll} \right\rangle dN_{pp}^{J/\Psi}}$$

Nuclear modification factor

- Goal of this work: introduce $J/\Psi p_T$ in shadowing computation
 - In this talk, we'll consider EKS98 shadowing only
 - Investigating two mechanisms
 - × $g+g \rightarrow J/\Psi \rightarrow$ « intrinsic » scheme: the p_T of the J/Ψ comes from initial partons
 - Can be parametrized using the data
 - $g+g \rightarrow J/\Psi+g \rightarrow \ll$ extrinsic » scheme: the p_T of the J/Ψ is balanced by the outgoing gluon
 - Need a model to be described

F. Fleuret LLR-CNRS/IN2P3

FFLR - Hard Probes 2008

This work Glauber modelisation of CNM effects

See arXiv:0801.4949 for more details

3

- An event generator to produce J/Ψ samples
 - Based on a glauber Monte Carlo
 - Use J/ Ψ production models (or data) to get (J/ Ψ) y, p_T, x₁, x₂, Q²

• Using EKS98, modify the J/Ψ cross section according to:

 $\sigma_{AB}^{J/\Psi} = R_{shadow}^{A} \left(x_{1}, Q^{2}, b \right) \times R_{shadow}^{B} \left(x_{2}, Q^{2}, b \right) \times \left\langle N_{coll} \right\rangle \sigma_{pp}^{J/\Psi}$

• Compare with data using: $R_{AB} = \frac{dN_{AB}^{J/\Psi}}{\langle N_{coll} \rangle dN_{pp}^{J/\Psi}}$

• Use « intrinsic » (g+g \rightarrow J/ Ψ) and « extrinsic » (g+g \rightarrow J/ Ψ +g) schemes as inputs to get J/ Ψ kinematics information

F. Fleuret LLR-CNRS/IN2P3

FFLR - Hard Probes 2008

FFLR - Hard Probes 2008

F. Fleuret LLR-CNRS/IN2P3

FFLR - Hard Probes 2008

d+Au Rapidity dependence

intrinsic.vs.extrinsic

Intrinsic (g+g \rightarrow J/ Ψ)

• Small difference when adding p_T . In p+p: < pT > < 2 GeV/c

$$x_{1,2} = \frac{M_T}{\sqrt{s}} e^{\pm y} \sim \frac{M}{\sqrt{s}} e^{\pm y}$$

• No significant difference between p_T from central and forward rapidity

Extrinsic $(g+g \rightarrow J/\Psi + g)$

significant difference between intrinsic and extrinsic scheme : more antishadowing at mid rapidity ; less shadowing at forward rapidity.

d+Au Rapidity dependence

breakup (absorption) cross section

Nuclear absorption added

• Intrinsic scheme:

• following PHENIX PRC 77, 024912 (2008), best match is obtained with $\sigma_{breakup} = \sigma_{abs} = 2.8 \text{ mb}$

•Extrinsic scheme:

- $\sigma_{\text{breakup}} = 2.8 \text{ mb is not enough for}$ extrinsic scheme to match data
- Try $\sigma_{breakup} = 4.2 \text{ mb}$ as measured by NA50. \rightarrow good match
- $\label{eq:star} \begin{array}{l} \bullet \quad to \ be \ done: \ determining \ best \ \sigma_{breakup} \\ using \ \chi^2 \ minimization \end{array}$

d+Au Centrality dependence

intrinsic .vs. extrinsic (w/ absorption)

d+Au Transverse momentum dependence

intrinsic .vs. extrinsic (w/ absorption)

R_{dAu} .vs. p_T Backward rapidity: Same behavior for R_{dAu} 1.6 both scenarios ; difficult to conclude 1.4 about the slope 1.2 \rightarrow 0.8 -2.2<y<-1.2 0.6 1.8 intrinsic pr with Gabe = 2.8 mb *Mid rapidity:* Same behavior for both scenarios and match the data 2. **Extrinsic** p_{T} with $c_{abs} = 4.2$ mb \rightarrow 0.8 0.6 <mark>₀</mark>|y|<0.35 በ 4 *Forward rapidity:* Both scenarios have the same behavior ; slopes seem smaller than in the data 3. 0.9 0.8 0.7 0.6 1.2<y<2.2 Ē \rightarrow 0.5 p_f(GeV/c) $\rightarrow p_T$ broadening ? Cronin effect ? **Difficult to conclude**

Need more precise data

F. Fleuret LLR-CNRS/IN2P3

FFLR - Hard Probes 2008

Au+Au centrality dependence

intrinsic .vs. extrinsic (w/ absorption)

Intrinsic

 Same CNM suppression at forward and central rapidity. More « additionnal » suppression observed at forward than at mid rapidity

Extrinsic

• More CNM suppression at forward than at central rapidity. Seems to be consistent with the behavior observed in most central data. R_{AA}/CNM to be done...

Au+Au rapidity dependence

intrinsic .vs. extrinsic (w/ absorption)

• Intrinsic

 Shape of CNM effects ~flat for all centrality bins → suppression due to HDM effects is larger at forward rapidity than at central rapidity.

• Extrinsic

 Shape of CNM effects is changing with centrality and follows the data → suppression due to HDM effects is ~flat for all centrality bins.

Au+Au transverse momentum dependence

• No major difference between intrinsic and extrinsic

- Both models seem to reproduce fairly well the slopes of |y|<0.35 data at any centrality
- Both models fail to reproduce the slopes of |y| ∈ [1.2,2.2] data for central events → larger slope in the data (Cronin effect ?)
- Will look at $< p_T^2 > \dots$

F. Fleuret LLR-CNRS/IN2P3

FFLR - Hard Probes 2008

Conclusion

13

- We have investigated effects of « intrinsic » (g+g \rightarrow J/ Ψ) and « extrinsic » (g+g \rightarrow J/ Ψ +g) p_T schemes on shadowing (using EKS98)
- Observe significant differences in the shadowing effects when using the two schemes \rightarrow it is important to understand J/ Ψ production in p+p collisions
- These differences affect the conclusion we can make when studying HDM effects in Au+Au collisions
 - The difference between R_{AuAu} forward / R_{AuAu} central can be partly due to CNM effects
 - The R_{AuAu}.vs.y shape can be partly due to CNM effects
- Transverse momentum studies give additionnal information
 - R_{AuAu} .vs.pT shape is fairly well reproduced by CNM effects at mid-rapidity
 - R_{AuAu}.vs.pT slope is smaller for CNM effects than for the data at forward rapidity
- More precise d+Au data are needed to better constraint the models → new d+Au data have been recorded this year (run 8) → 30 times more data...

F. Fleuret LLR-CNRS/IN2P3

FFLR - Hard Probes 2008

