Know How at LLR

Ultra-granular calorimetry AFTER vs CHIC

AFTER vs CHIC

AFTER project

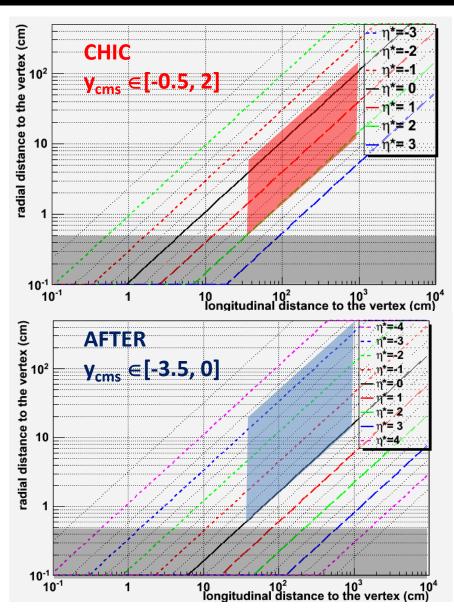
- LHC fixed target experiment
- Multi-purpose detector
- Test negative x_F region $(x_F \in [-1,0])$
- Must be designed to run in p+p, p+A, A+A \rightarrow high occupancy
- Long term

CHIC project

- SPS fixed target experiment
- Dedicated to charmonium physics
- − Test positive x_F region $(x_F \in [0,1])$
- Must be designed to run in p+p, p+A, A+A \rightarrow high occupancy
- middle term
- could be used as a demonstrator for after

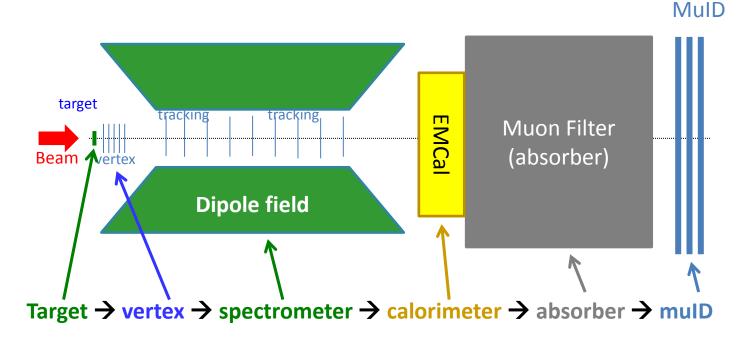
Charmonia in Heavy Ion Collisions

What is CHIC?


- CHIC is a project of a fixed target experiment to be operated in Pb+Pb collisions at SPS energies (\sqrt{s} 20 GeV)
- Benchmark 1: χ_c production in Pb+Pb at \sqrt{s} =17 GeV
 - Measure χ_c production within $y_{cms} \in [-0.5, 0.5]$
 - Test charmonium sequential suppression in a QGP
 - Complementary with J/Ψ and Y measurements at RHIC/LHC
 - χ_c production in A+A is currently unreachable at any facility
- Benchmark 2: charmonia production in p+A within y_{cms} ∈ [-0.5, 2]
 - Precise measurement of Cold Nuclear matter effects at SPS
 - Test a wide rapidity range (up to $y=2 \equiv x_F^{-1}$)
 - Gluon shadowing at SPS energies
 - Energy loss, hadronisation time
- Other physics subjects: Drell-Yan, open charm, photons, hadrons

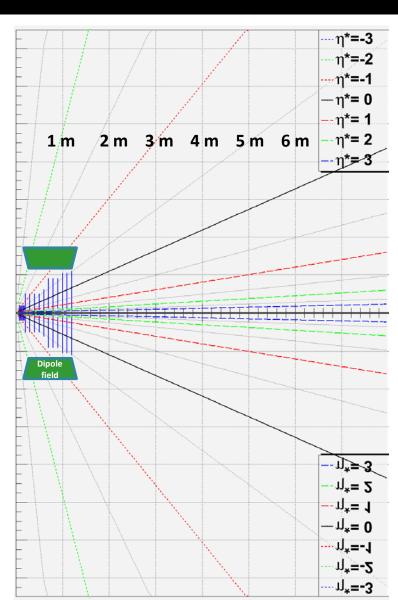
CHIC and AFTER

Experimental constraints


- kinematics
 - CHIC: Access $y_{cms} \in [-0.5, 2]$
 - AFTER: access $y_{cms} \in [-3.5, 0]$
- Beams
 - p+p, p+A, A+A
- Detector
 - CHIC: vertexing, tracking, calorimetry, muon ID
 - AFTER: vertexing, tracking, calorimetry, muon ID, PID

CHIC ≡ **demonstrator for AFTER**

- design generalities (Common to CHIC/AFTER)
 - Adopt particle physics strategy
 - Measure dimuons and photons
 - Must place the calorimeter in front of the absorber
 - Must separate photon/electron
 tracking in front of the calorimeter.



tracking

20 cm

Vertex detector:

$$R_{min} = 0.5 \text{ cm}$$
 $Z_{min} = 7.5 \text{ cm}$
 $R_{max} = 3.5 \text{ cm}$ $Z_{max} = 18 \text{ cm}$

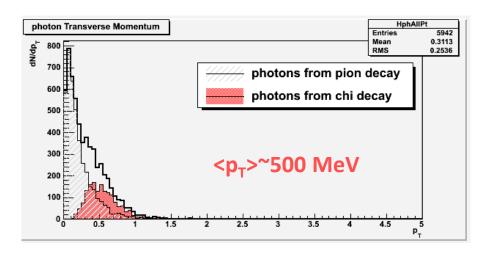
Spectrometer:

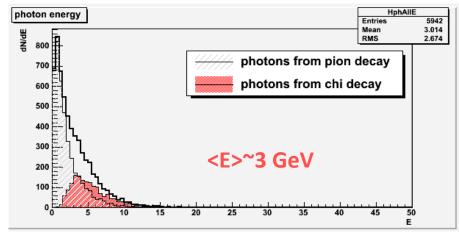
$$R_{min} = 1 \text{ cm}$$
 $Z_{min} = 20 (100) \text{ cm}$
 $R_{max} = 22 \text{ cm}$ $Z_{max} = 120 (200) \text{ cm}$

Magnet:

Typical J/ Ψ P_{μ} ~ 15 GeV

→ With a 1 m long 2.5 T dipole:


$$\frac{\Delta P}{P} = 1\% \Rightarrow \Delta M_{J/\Psi} \sim 20 \,\mathrm{MeV}$$

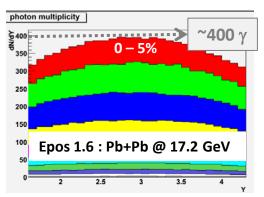


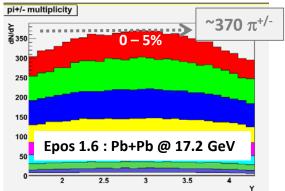
calorimetry

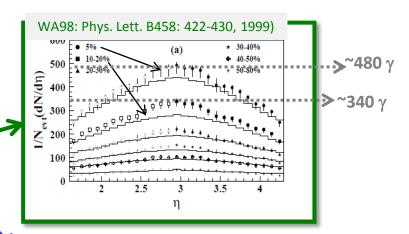
- Goal : measure $\chi_c \rightarrow J/\Psi + \gamma$
- Issues
 - 1. Low energy photon (similar to $\pi^0 \rightarrow \gamma \gamma$)
 - 2. High multiplicity of photon from $\pi^0/\eta \rightarrow \gamma\gamma$
 - 3. High multiplicity of charged particles $(\pi^{+/-})$

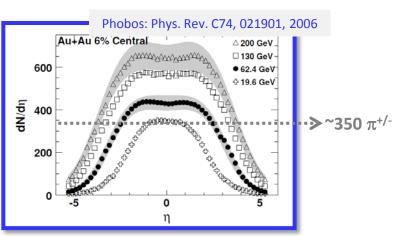
Pythia 6.421 - p+p - \sqrt{s} = 17.2 GeV

calorimetry


• Goal : measure $\chi_c \rightarrow J/\Psi + \gamma$


Issues


1. Low energy photon (similar to $\pi^0 \rightarrow \gamma \gamma$)


2. High multiplicity of photon from $\pi^0/\eta \rightarrow \gamma\gamma$

3. High multiplicity of charged particles $(\pi^{+/-})$

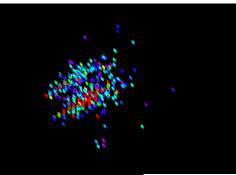
0 – 5% Pb+Pb most central \Rightarrow ~450 γ + 350 $\pi^{+/-}$ (we don't need to go that central for χ_c)

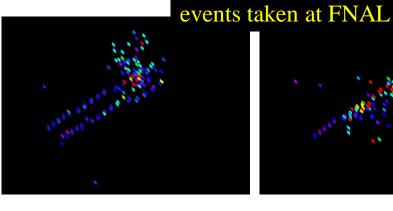
calorimetry

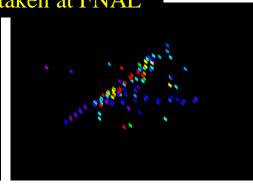
Need very high segmentation

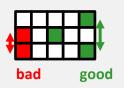
- to separate two electromagnetic showers
- To isolate photons from $\pi^{+/-}$ contamination

W + Si calorimeter à la Calice

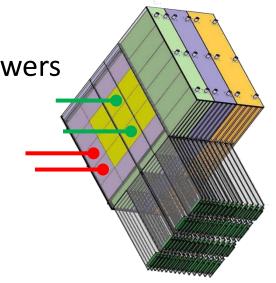

- 30 layers
- $-0.5 \times 0.5 \text{ cm}^2 \text{ pads}$
- $-24 X_0 in 20 cm$


• LLR - Contributions


- Mechanics
- Sensors
- DAQ
- Reconstruction (GARLIC)
- Simulation (MOKKA)


calorimetry

Need very high segmentation


to separate two electromagnetic showers

- To isolate photons from $\pi^{+/-}$ contamination
- W + Si calorimeter à la Calice
 - 30 layers
 - $-0.5 \times 0.5 \text{ cm}^2 \text{ pads}$
 - $-24 X_0 in 20 cm$

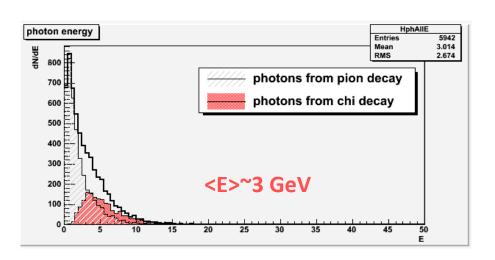
1st relevant quantity: distance between two incoming particles

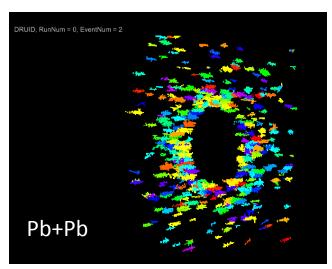
- →Min. distance between 2 particles at impact = 1 free pad = 1 cm (for 0.5×0.5 cm²)
- → distance between two incoming particles must be > 1 cm
- →N photons → N/2 neutrals $(\pi^0 + \eta)$ → N $\pi^{+/-}$
 - \rightarrow N γ + N $\pi^{+/-}$ = 2N particles
- → distance between two photons must be > 2 cm (1cm×2N/N)

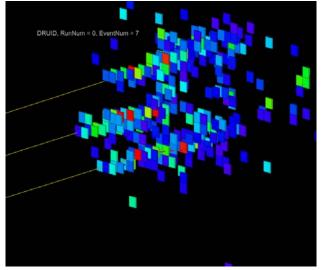
2nd relevant quantity: EM shower transverse size

→ Moliere Radius R_M : 90% of the shower energy

$$\begin{cases} R_{M} = X_{0} \frac{21 \,\text{MeV}}{610 \,\text{MeV}/(Z+1.24)} \\ X_{0} = \frac{716.4 \times \text{A g.cm}^{-2}}{Z(Z+1) \ln(287/\sqrt{Z})} \Rightarrow R_{M}(W) = \frac{17.6 \,\text{g.cm}^{-2}}{19.25 \,\text{g.cm}^{-3}} \approx 0.9 \,\text{cm} \end{cases}$$

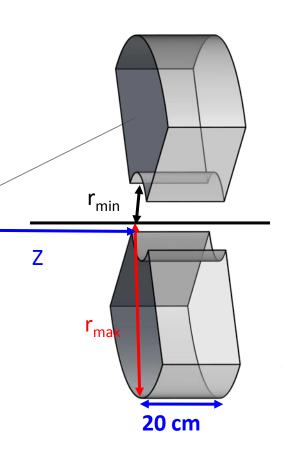

→ Distance between two photons must be > 2 cm (2 R_M)

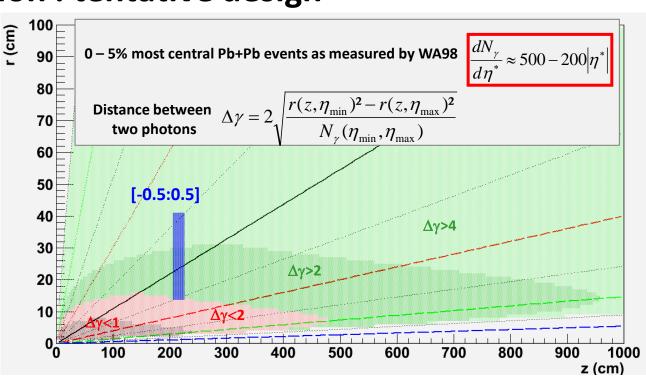

Geometrical condition: in principle $\Delta \gamma > 2$ cm


calorimetry

Full simulation performed with the Calice Ecal proto

3 photons with E~2 GeV distance between each photon~ 2 cm




0.5 x 0.5 cm² pads

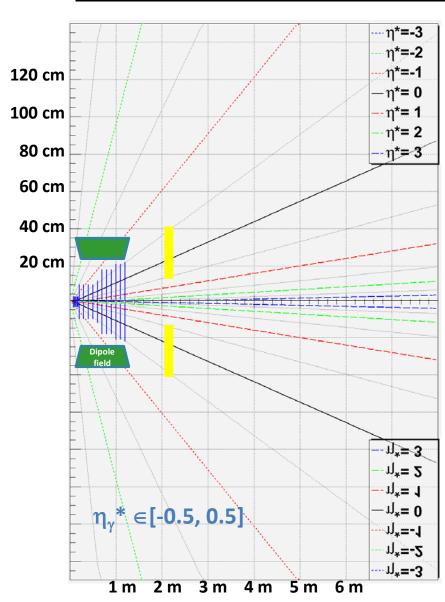
(full simu made by D. Jeans - Calice collab.)

calorimetry

Size and position: tentative design

Closer position to the target w/ $\Delta \gamma$ >2cm:

$$\rightarrow$$
 Z = 205 cm [-0.5:0.5]


→
$$R_{min}$$
 = 13.6 cm

→
$$R_{max}$$
 = 40.9 cm

Using 0.5 x 0.5 cm² pads

Overview

Vertex detector:

 $R_{min} = 0.5 \text{ cm}$ $Z_{min} = 7.5 \text{ cm}$ $R_{max} = 3.5 \text{ cm}$ $Z_{max} = 18 \text{ cm}$

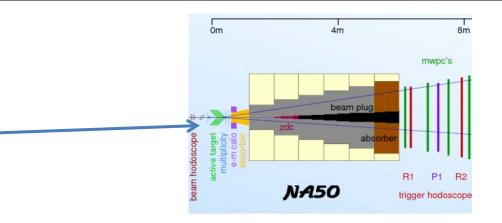
Spectrometer:

 $R_{min} = 1 \text{ cm}$ $Z_{min} = 20 (100) \text{ cm}$ $R_{max} = 22 \text{ cm}$ $Z_{max} = 120 (200) \text{ cm}$

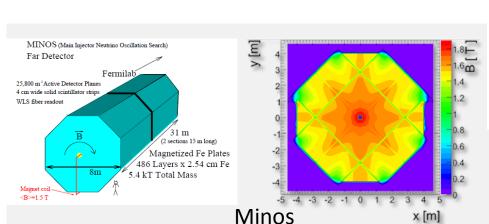
Calorimeter $\Delta \gamma > 2$ cm:

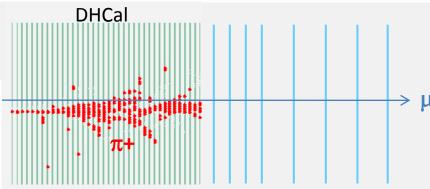
Rmin = 14 cm Zmin = 205 cmRmax = 41 cm Zmax = 225 cm

Absorber


Absorber type

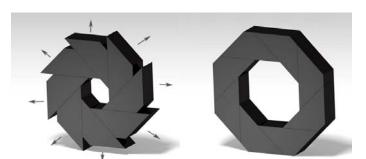
NA50/NA60: measure muon momentum after the absorber


- → must minimize multiple scattering
- Must use low Z material: best = BeO (but expensive)
- NA50 : 0.6 m BeO + 4 m C + 0.6 m Fe = 5.2 m


CHIC: measure muon momentum before the absorber

- → minimization of multiple scattering not crucial
- \rightarrow can use Fe material To absorb $\pi^{+/-}$

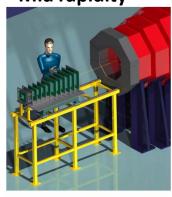
Need to match muon track position between spectrometer and trigger : Use an instrumented Fe absorber

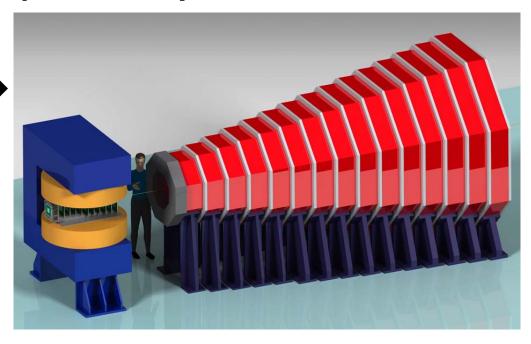

http://newsline.linearcollider.org/archive/2010/20101104.html

Can match muon track momentum between spectrometer and trigger : Use magnetized Fe absorber ?

Overview

CHIC: Experimental setup flexibility

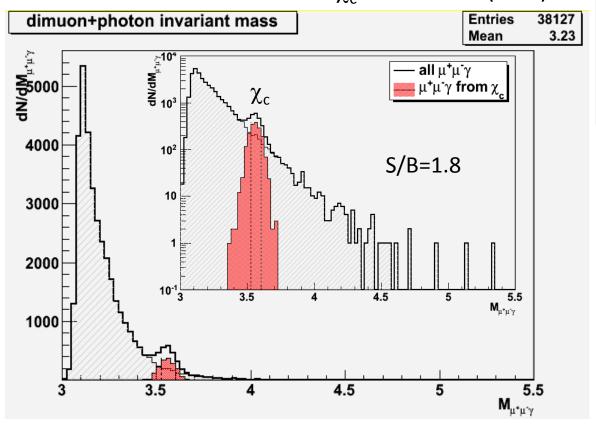

Very compact detector (full detector simulation ongoing)



Forward rapidity

Mid rapidity

Large rapidity coverage


- fixed target mode → high flexibility
- displace tracker to access large rapidity
- modify calorimeter to access large rapidity

Charm in Heavy Ion Collisions Signal extraction

Typical mass plots

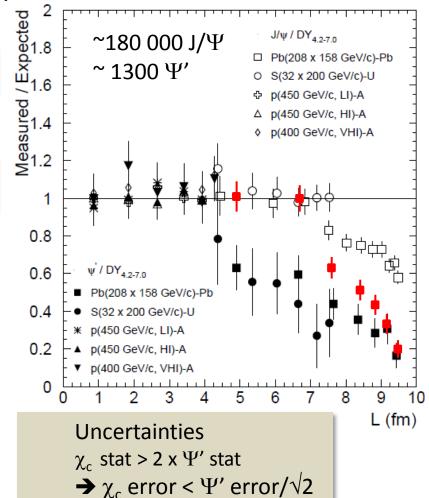
- 200 000 Pb+Pb minBias EPOS events
 - 140 000 events with J/Ψ embedded (70%)
 - 60 000 events with χ_c embedded (30%)

After acceptance and selection cuts:

- 35 000 J/Ψ
- → acc x eff = 17.4%
- •1700 χ_c
- → acc x eff = 2.8 %

Charm in Heavy Ion Collisions Figure of Merit

Typical one month Pb+Pb run with a 4mm thick target


- $-\sim 200~000$ inclusive J/ $\Psi \rightarrow \mu^+ \mu^-$ expected
- 2 extreme scenarios:

• If
$$\chi_c$$
 suppressed as J/ Ψ $\frac{\chi_c}{J/\Psi}$ yield ~ 4%

• If χ_c suppressed as Ψ' $\frac{\chi_c \text{ yield}}{\Psi' \text{ yield}} = 2.18$

$$\begin{pmatrix} \text{most periph.} \\ \chi_c \text{ yield} \end{pmatrix} = 16942 \times 4\% \times 0.6 = 406$$

					γ
	E_T range (GeV)	ψ'	J/ψ	χ _{c as J/Ψ}	χ _{c as Ψ'}
	3–20	186 ± 25	16942 ± 146	677	406
	20–35	243 ± 31	25229 ± 181	1010	530
-	35–50	227 ± 35	27276 ± 192	1091	495
	50-65	193 ± 36	27681 ± 196	1107	421
	65-80	154 ± 36	27315 ± 200	1093	336
	80–95	159 ± 37	25111 ± 193	1004	347
	95–150	110 ± 40	28570 ± 209	1143	240
				7125	2775

Conclusion

CHIC at SPS : current status

- No show stopper for measurement of χ_c in Pb+Pb at SPS
- Towards writing a Letter (contributions are very welcome)
- Activities: currently starting a simulation with Geant4;
 support of 1 computer engineer and 1 Calice postdoc at LLR

From CHIC to AFTER

- After will be a large/expensive detector using detector technologies which have been developed for other physics subjects; a demonstrator would be very welcome
- CHIC
 - It is a smaller scale than AFTER
 - Beam is available
- CHIC could be a perfect demonstrator for AFTER