Charmonia production in heavy ion collisions, from SPS to LHC

FRÉDÉRIC FLEURET LLR – CNRS/IN2P3 École polytechnique Palaiseau, France

F. Fleuret LLR-CNRS/IN2P3

Introduction

- Motivations
 - Suppression of quarkonia is a prediction of lattice QCD calculations, for instance :

H. Satz, J. Phys. G 32 (2005)	state	$\mathrm{J}/\psi(1S)$	$\chi_c(1\mathrm{P})$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
	T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

• Experimental setup

- SPS/CERN NA38, NA50 and NA60 experiments ($\sqrt{s_{NN}} = 17 30$ GeV)
 - Fixed target experiments
 - **Large statistic** (100 000's J/ψ)
 - **Many data set of different types** (p+A w/ A=p, d, Be, Al, Cu, Ag, W, Pb; S+U, In+In, Pb+Pb)
 - **Small rapidity coverage (typically y \in [0,1])**
- RHIC/BNL Phenix experiment ($\sqrt{s_{NN}} = 200 \text{ GeV}$)
 - Collider experiments
 - Smaller statistic : 1000's J/ ψ (10000's since 2007)
 - Fewer number of data set of different types (p+p, d+Au, Cu+Cu, Au+Au)
 - **Large rapidity coverage** ($y \in [-0.5, 0.5], y \in [-2.2, -1.2]$ and $y \in [1.2, 2.2]$)
- LHC/CERN experiments ($\sqrt{s_{NN}} = 5,5 \text{ TeV}$)
 - Collider experiments
 - × **Large statistic** (100000's J/ψ)
 - Few number of data set of different types (p+p, Pb+Pb, p+Pb)
 - **Large rapidity coverage** (|y|<2.5 ATLAS/CMS, |y|<0.9 and -4.0 < y < -2.5 ALICE)

F. Fleuret LLR-CNRS/IN2P3

Charmonium production at SPS

NA38, NA51, NA50, NA60

Two major results :

- 1. Observation of **Cold Nuclear Matter effects** : Absorption by nuclear matter
 - Suppression observed from p+p to peripheral Pb+Pb
 - J/ψ survival probability :

 $\mathbf{S}(\mathbf{J}/\psi) \propto (\sigma_{abs}L)$

- Fit to data: σ_{abs} =4.18 ±0.35 mb
- 2. Observation of **Anomalous suppression** in Pb+Pb (NA50) and In+In (NA60) central collisions when compared with Cold Nuclear Matter effects.

Charmonium production at RHIC

• PHENIX

- Two experimental stricking observations
 - Point 1 : similar behavior SPS.vs.RHIC at mid-rapidity
 - $\circ~$ At a given $N_{\rm part}$ expect different energy densities
 - Don't expect same CNM effects

F. Fleuret LLR-CNRS/IN2P3

Panic 2008 - Eilat

Charmonium production at RHIC

• PHENIX

Two experimental stricking observations

- ► Point 1 : similar behavior SPS.vs.RHIC at midrapidity
- Point 2 : larger suppression at forward rapidity compared to mid-rapidity (confirmed with recent data)

N_{part} = number of participant nucleons

F. Fleuret LLR-CNRS/IN2P3

Panic 2008 - Eilat

SPS .vs. RHIC at mid-rapidity Cold Nuclear Matter effects

- Measured R_{AA} include
 - Hot and Dense Matter effects (HDM)
 - Cold Nuclear Matter effects (CNM)
- Need to remove CNM effects
 - At SPS : use p+A data (σ_{abs} = 4.2 mb)
 - At RHIC : use d+Au data
 - Shadowing (modification of PDFs) could play a role
 - × Absorption can be smaller
 - due to large uncertainties in d+Au data at RHIC can't tell weither CNM effects are the same or not.
- Need more precise CNM effect measurements at RHIC
 - run 8 : ~30 x more data (ongoing analysis)

F. Fleuret LLR-CNRS/IN2P3

Panic 2008 - Eilat

RHIC mid.vs.fwd

Hot and Dense Matter effects : recombination

recombination models

- Recombination (regeneration) is a Ο mechanism which leads non-correlated c and \overline{c} quarks to combine into a $c\overline{c}$ bound state (such as J/ψ) : $c+\overline{c} \rightarrow J/\psi + g$
- Compensate direct suppression 0

Recombination .vs. Rapidity

- Adding recombination to comovers
- More recombination at mid-rapidity

How to test recombination ?

√s = 200 GeV

F. Fleuret LLR-CNRS/IN2P3

Testing recombination PHENIX J/ ow measurement

PH^{*}ENIX Non photonic electrons

0.15

Non photonic electrons (charm+beauty) flow at RHIC. If J/ψ are regenerated, they should inherit from charm-quark flow.

RHIC mid.vs.fwd back to CNM effects

10

- Could the difference mid.vs.fwd come from CNM effects ?
 - CGC (gluon saturation)
 - × Enhancement of 3 gluons fusion in J/Ψ production mechanism
 - × Absolute amount of suppression is fitted on semi-peripheral data
 - × Ratio fwd/mid comes from the model

• Shadowing (modification of PDFs) based on new $g+g \rightarrow J/\psi$.

F. Fleuret LLR-CNRS/IN2P3

Panic 2008 - Eilat

Point 2 : RHiC mid.vs.fwd back to the data

- Extrapolate CNM effects from d+Au to Au+Au with data driven method
 - Fit d+Au data as a function of centrality (impact parameter)
 - Extrapolate to Au+Au
 - Within errors, the suppression could be the same at forward and mid rapidity
 - Need better statistics in $d+Au \rightarrow run \ 8 \ (2008) \ d+Au$

F. Fleuret LLR-CNRS/IN2P3

Panic 2008 - Eilat

Conclusion for SPS and RHIC

12

- Summary of SPS and RHIC
 - Comparable R_{AA} at mid-rapidity between SPS and RHIC
 - Larger suppression observed by PHENIX at forward rapidity compared to mid rapidity → several explanations ; not discriminate yet. 0
 - CNM effects are not well constrained at RHIC. Need better measurement → run 8 d+Au Ο data (~ 80 000 J/ Ψ); may need other systems.

Up to 2008

Obtained

380

7.0

2009

Projected

610

14.6

36.5

2011

Projected

1450

31.1

78

2013

Projected

1820

40

100

Next at RHIC

RHIC luminosities advance

Detector upgrades Ο

- pb^{-1} 500pp× PHENIX : barrel and endcap silicon vertex detector
- STAR : DAQ upgrade + tracking upgrade (silicon pixel sensors + silicon strip pad sensors)

Species Energy Units

200

200

Au+Au

pp

 μb^{-1}

 pb^{-1}

Impact on physics 0

- × Better mass resolution, better signal/background ratio
- × Ψ' , χ_c measurements $(J/\Psi \sim 0.6 J/\Psi + 0.3 \chi_c \rightarrow J/\Psi + 0.1 \Psi' \rightarrow J/\Psi)$?

F. Fleuret LLR-CNRS/IN2P3

Panic 2008 - Eilat

Outlook for LHC

• ALICE mid (e⁺e⁻)

- $J/\psi \rightarrow dielectron (|y| < 0.9)$
- Resolution: $\sigma = 30 \text{ MeV}/c^2$
- Signal/Bkg: ~1.2
- Expected rate (one month, 10⁶s): 120k

ALICE forward (μ⁺μ⁻)

- J/ ψ → dimuon (-4<y<-2.5)
- Resolution: s=70 MeV/c²
- Signal/bkg ~ 0.2
- Expected rate (one month) : 680k

Outlook upsilon

15

• In the future, new observable : bottonium states

state	$\mathrm{J}/\psi(1S)$	$\chi_c(1\mathrm{P})$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_d	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

STAR 12 weeks Au+Au

12/11/2008

F. Fleuret LLR-CNRS/IN2P3

Charmonia production in HIC conclusion

16

- Many results already got from SPS and RHIC
 - Still difficult to get a satisfying overall picture
 - Lack of CNM effects understanding at RHIC (so far)
- New results from RHIC upgrades should help to make progress
 - Larger statistic (Au+Au 2007, d+Au 2008 and futur)
 - Better heavy flavor study (thanks to upgrades)
 - Ψ and χ_c ?
- LHC experiments should provide a complementary view
 - Much higher energy (from 5.5 TeV in Pb+Pb to 14 TeV in p+p) and high statictics
 - Very good detector performances
 - But ...
 - × Only one month of Heavy Ion Collisions per year
 - Different energy regimes (constant Z/A*Energy)
 - p+p @ 14 TeV (can do p+p @ 5.5 TeV, but taken on HIC one month program)
 - Pb+Pb @ 5.5 TeV
 - p+Pb or Pb+p @ 8.8 TeV (ALICE has (only) one muon spectrometer)
 - Asymetric beam energy implies shift of rapidity window (0.5 unit for p+Pb compared to Pb+Pb) → issues for CNM effects
 - ... it will take some time

F. Fleuret LLR-CNRS/IN2P3