An experiment to measure χ_c suppression at the CERN SPS

CHIC: Charm in Heavy Ion Collisions

F. Fleuret ¹, F. Arleo ², E. G. Ferreiro ³, P.-B. Gossiaux ⁴, S. Peigné ⁴

¹ LLR, École polytechnique – IN2P3/CNRS, Palaiseau, France

² LAPTh, Université de Savoie – CNRS, Annecy-le-Vieux, France

³ Universidad de Santiago de Compostela, Santiago de Compostela, Spain

⁴ SUBATECH, université de Nantes – IN2P3/CNRS, Nantes, France

F. Fleuret - LLR Ecole polytechnique, France

C Charmonia in A+A

- Test color screening through quarkonium measurements
 - Quarkonium color screening in a QGP is a prediction of lattice QCD, for instance :

H. Satz, J. Phys. G 32 (2006)

· 206)	state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
<u>500)</u>	T_d/T_c	2.10	1.16	1.12	> 4.0	1.76	1.60	1.19	1.17

 Because of feed-downs and different T_d, sequential suppression should show up.

• Experimentally

- J/ Ψ production in A+A collisions is (has been) studied at :
 - SPS ($\sqrt{s^{17}}$ GeV) : NA38, NA50, NA60 experiments
 - RHIC (\sqrt{s} ~200 GeV) : PHENIX, STAR experiments
 - LHC (\sqrt{s} ~2.76 TeV) : ALICE, CMS experiments
- Unclear overall picture :
 - Hot and Dense Matter effects are due to Quarkonium screening ? Recombination ? Both ?
 - Moreover, Cold Nuclear Matter effects must be better controlled (understood)
- To understand Hot and Dense Matter effects, need to answer color screening question first. (Recombination occurs at high energies)

Charmonia in A+A **Testing color screening**

Testing sequential suppression with charmonia :

- must be in a regime where recombination is negligible \rightarrow SPS energies 1.
- must measure the suppression pattern of two related states, for instance: 2.
 - ~30% of the inclusive J/ Ψ yield comes from χ_c decay.
 - According to lattice calculations, $T_d(\chi_c) < T_d(J/\Psi)$
 - If screening, one should observe a gap in suppression patterns
- Alternative scenario: suppression by comoving hadrons
 - Smooth suppression
 - Same starting point
 - Slopes related to binding energy : $S_{\Psi'} > S_{\chi} > S_{J/\Psi'}$

Charmonia in A+A Sequential suppression

 Anomalous suppression p² at SPS
 sequential suppression (QGP) ?

> or comovers (no QGP) ?

60% direct J/ Ψ + **30%** $\chi_c \rightarrow J/\Psi + \gamma$ + **10%** $\Psi' \rightarrow J/\Psi + X$ Inclusive J/ Ψ yield

Measuring Ψ' only is not the answer : too small feed-down

➔ need of a larger feed-down fraction

Measuring J/ Ψ , Ψ ' and χ_c suppression patterns will give the answer

Charmonia in A+A

Measuring χ_c at SPS

- Operate a new experiment at SPS
 - Primary goal : $\chi_c \rightarrow J/\Psi + \gamma \rightarrow \mu^+ \mu^- \gamma$
 - With high intensity 158 GeV/c Pb beam
 - With high intensity 450 GeV/c proton beam
 - Detector features :
 - 1. Vertex + Spectrometer
 - » Measure tracks before absorber for very good mass resolution

2. Calorimeter

- » Measure low energy γ in high π^0 multiplicity environment
 - 3. Absorber/trigger
- » Absorb π/K
- » Minimize fake triggers from π/K decays

CHIC Apparatus

Main purpose : measure $\chi_c \rightarrow J/\Psi + \gamma$ in Pb+Pb collisions at $\sqrt{s} = 17.2 \text{ GeV}$

Silicon Spectrometer : Measure tracks before absorber covers 1.5 rapidity unit $\Delta p/p = 1\% \Rightarrow J/\Psi$ mass resolution ~20 MeV/c²

Estimations based on NA60 telescope performances

Magnet : 1m long 2.5 T dipole

C Expected performances

- **Signal extraction**
- Typical mass plots (5 days data taking w/ a 10% λ_1 Pb target)
 - 200 000 Pb+Pb minBias EPOS events
 - 140 000 events with J/ Ψ embedded (70%)
 - 60 000 events with χ_c embedded (30%)

After acceptance and selection cuts:

 • 35 000 J/Ψ
 → acc x eff = 17.4% mass resolution ~ 20 MeV/c²

•1700 χ_c \rightarrow acc x eff = 2.8 % mass resolution ~ 45 MeV/c²

Statistics

• Typical one month Pb+Pb run

− ~ 200 000 inclusive J/ $\Psi \rightarrow \mu^+ \mu^-$ expected

PC p+A program **investigate Cold Nuclear Matter**

A thorough p+A program is mandatory as reference for hot nuclear matter effects

- Must control (understand) :
 - charmonium absorption by cold nuclear matter \rightarrow A dependence
 - Shadowing/anti-shadowing (x₂ scaling)
 - Energy loss (saturation)... (x_F scaling)
- Two detector configurations to cover $y_{CMS} \in [-0.5; 2]$

Mid-rapidity : $y_{CMS} \in [-0.5; 1]$

Forward-rapidity : $y_{CMS} \in [0.5; 2]$

➔ Need large y_{CMS} range

p+A program investigate Cold Nuclear Matter

A thorough p+A program requires

- J/Ψ, Ψ', χ_c with several targets
 (NA50: p+Be, p+Al, p+Cu, p+Ag, p+W, p+Pb)
- J/ Ψ , Ψ ', χ_c in a large y_{CMS} range
- Large statistics (in principle, can run with proton beam several months per year)

E _{beam} (√s)	Exp.	У _{смs}	x ₂	× _F	
158 GeV	NA50	[0;1]	[0.07;0.18]	[0;0.43]	
(17 GeV)	CHIC	[-0.5;2]	[0.02;0.30]	[-0.2;1]	
450 GeV	NA50	[-0.4;0.6]	[0.06;0.16]	[-0.09;0.14]	
(29 GeV)	CHIC	[-0.9;1.6]	[0.02;0.26]	[-0.2;0.5]	

F. Fleuret - LLR Ecole polytechnique, France

- Measuring together J/ Ψ , Ψ ' and χ_c in p+A collisions with several targets will give a thorough control of Cold Nuclear Matter effects
- Measuring together J/ Ψ , Ψ ' and χ_c in A+A collisions at SPS energies will (dis)prove sequential suppression scenario.
- The use of ultra-granular calorimetry gives access to photon measurement in high multiplicity environment
 ➔ first measurement of χ_c in A+A collisions.
- Understanding sequential suppression at SPS is crucial to fully understand RHIC and LHC results.

CHIC CMS@LHC

New upsilon results

F. Fleuret - LLR Ecole polytechnique, France

J/Y@SPS .vs. Y@LHC sequential suppression ?

J/Y@SPS .vs. Y@LHC sequential suppression ?

2

Measured / Expected 7 8. 8. 8. 7 8. 8

0.8

0.6

0.2

0

F. Fleuret - LLR Ecole polytechnique, France