J/Ψ : revue des résultats expérimentaux

• Matsui & Satz Phys. Lett. B178 (1986) :

o « ... It is concluded that J/Ψ suppression in nuclear collisions should provide an **unambigous signature** of quark-gluon plasma formation »

• Ce matin :

- Franck → résultats du SPS
- Catherine → Mesure du J/Ψ au Rhic

• À venir :

- o Andry → effets nucléaires froids → pas de déconfinement
- Elena → effets nucléaires chauds → déconfinement
- Ici : comparaison SPS / Rhic

Données expérimentales

• SPS : NA50/NA60

• Avantages :

- × grande stat
- × Beaucoup de données p+A
- Inconvénients :
 - × petite couverture en rapidité

• Rhic : Phenix

• Avantages :

- grande couverture en rapidité
- Inconvénients :
 - × faible stat
 - × Seulement d+Au

Frédéric Fleuret - LLR

Données : comparaison SPS .vs. Rhic

- Fait expérimental : à même rapidité, R_{AA} est équivalent au SPS et au Rhic
- MAIS, il faut prendre en compte les effets nucléaires froids.

$$\mathbf{R}_{AA} = \frac{\mathbf{dN}_{AB}^{\mathbf{J}/\psi}}{\mathbf{dN}_{pp}^{\mathbf{J}/\psi} \times \left\langle \mathbf{N}_{coll} \right\rangle}$$

Effets froids : SPS .vs. Rhic

• **SPS : absorption** par la matière nucléaire

- Probabilité de survie :
- Au SPS: $\sigma_{abs}^{J/\psi} = 4.18 \pm 0.35$ mb
- Absorption attendue RHIC

• Rhic : shadowing des pdf

▶ faible shadowing (EKS) observé
▶ 1 mb < σ_{abs} < 3 mb

 $\mathbf{S}(\mathbf{J}/\Psi) \propto \mathbf{e}^{-\mathbf{\rho}\sigma_{abs}L}$

 $rightarrow \sigma_{abs}$ = 1 mb bon accord $rightarrow \sigma_{abs}$ = 3 mb limite supérieure

Eskola, Kolhinen, Vogt Nucl. Phys. A696 (2001)

 $\boldsymbol{\mathscr{X}}$ is the momentum fraction of the nucleon that a parton (quark or gluon) carries.

Etretat - Sept. 2007

Frédéric Fleuret - LLR

Comparaison SPS.vs.Rhic

- Prise en compte des effets nucléaires froids
 - Du point de vue expérimental : R_{AA}(Rhic_central) = R_{AA}(SPS)
 - Mais les effets nucléaires froids devraient être différents, ou pas !

Il faut (beaucoup) mieux contrôler les effets froids au Rhic

$$\mathbf{R}_{AA} = \frac{\mathbf{dN}_{AB}^{J/\psi}}{\mathbf{dN}_{pp}^{J/\psi} \times \left\langle \mathbf{N}_{coll} \right\rangle}$$

Extrapolation des effets froids de d+Au à Au+Au

Modélisation Raphaël GdC 1.2<|y|<2.2

Modélisation Raphaël GdC |y|<0.35

Etretat - Sept. 2007

Frédéric Fleuret - LLR

Effets froids : conclusion

• Point de vue expérimental :

o il FAUT (beaucoup) mieux contrôler les effets froids au Rhic

o → mesure de précision en d+A (Au,...)

• Nécessaire pour bien décrire les effets chauds

• Il reste des questions ouvertes...

Suppression anormale

10

• Les modèles qui reproduisent NA50...

• Les autres modèles :

o comovers

o Suppression séquentielle

o Recombinaison

Autres modèles

• Comovers au Rhic

- Au Rhic : Plus grande densité de comovers (partonique) qu'au SPS
- La densité de comovers est maximale dans la région centrale en rapidité
 - → plus forte suppression attendue à y=0 qu'à y=1.8
- ➔ Plus forte suppression observée à y=1.8 qu'à y=0

Capella, Ferreiro hep-ph/0610313

Autres modèles

Recombinaison

- Au Rhic, $N_{c\bar{c}} > 10$ en AuAu central (~10 x SPS)
- ο Recombinaison $c\bar{c}$ → J/Ψ + g
- $\circ~N_{J/\Psi} \propto N_{c \overline{c}}{}^2$
- o Données Phenix :
 - Ajouter la recombinaison compense la suppression directe
 - Meilleur accord avec les données

Frédéric Fleuret - LLR

Recombinaison (suite)

16

Recombinaison et pT²

 La recombinaison prédit une distribution plus étroite en p_T

• → plus petite valeur de $< p_T^2 >$

