CHIC Charm in Heavy Ion Collisions @ SPS

- 1. J/Ψ Suppression in A+A
- 2. CHIC Physics motivations
- 3. CHIC Experimental aspects

J/ Ψ – Suppression in A+A

- RHIC (200 GeV) .vs. LHC (2.76 TeV) at forward rapidity
- Compare PHENIX vs ALICE
 - 1.2 < |y| < 2.2 at RHIC (PHENIX)
 - 2.5 < y < 4 at LHC (ALICE)
- LESS SUPPRESSION at LHC .vs. RHIC
- Could be due to recombination effects
- RHIC (200 GeV) .vs. LHC (2.76 TeV) at midrapidity
- Compare PHENIX vs CMS
 - |y|<0.35 at RHIC (PHENIX)
 - |y|<1 at LHC (CMS)
- MORE SUPPRESSION at LHC .vs. RHIC
 - $p_T > 6.5 \text{ GeV/c} \rightarrow$ in principle no recombination applies
 - larger suppression due to QGP effects ?
- Hint for sequential suppression ? (J/ Ψ melting)

Caution : Need CNM effects comparison

J/Ψ – Suppression in A+A

• Overall (simplified) picture

- 1. Similar suppression at SPS.vs.RHIC
- 2. Larger suppression at LHC outside recombination regime CMS results Hint of sequential suppression ?

(assuming CNM effects are the same or smaller)

3. Smaller suppression at LHC inside recombination regime ALICE results

Hint of recombination? (assuming CNM effects are the same of larger)

• To do:

- Understand CNM effects : p+Pb run
- Test recombination mechanism : J/Ψ at mid-rapidity at low p_T
- − Test sequential suppression → measure χ_c in A+A→ not accessible → CHIC experiment

Energy Density

1. Benchmark: Measure χ_c in A+A at SPS

How χ_c is suppressed relative to J/ Ψ ? What is the dependence with y, p_T , centrality,...? Mandatory to draw the whole picture (SPS .vs. RHIC .vs. LHC)

Why SPS ?

3

- 1 First place where anomalous suppression has been seen.
- 2 SPS good place to see full Sequential suppression : Ψ' , J/ Ψ , χ_c
 - No recombination at SPS

Two possible scenarios

1. QGP (sequential suppression)

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Because ΔE (Ψ ') ~50 MeV

 ${}^{ullet} \Psi'$ easily suppressed by comovers

Because $\Delta E(\chi_c)^2 200$ MeV and $\Delta E(J/\Psi)^2 600$ MeV • χ_c and J/Ψ hardly suppressed by comovers

If χ_c suppressed by QGP,

• χ_c slope strongly steeper than J/ Ψ and Ψ'

Measuring

 χ_c suppression pattern will (in)validate this

Note that direct J/ Ψ can be experimentally estimated Yield_{incl.J/ Ψ} – Yield_{$\chi c \rightarrow J/\Psi + \gamma$} – Yield_{$\Psi'$} ~ Yield_{direct J/ Ψ}

• Two possible scenarios

2. No QGP (full comovers)

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Because $\sigma_{\text{J/}\Psi\text{-co}} \leq \sigma_{\chi\text{c-co}} \leq \sigma_{\Psi^{\prime}\text{-co}}$

- Ψ ' slope slightly steeper than χ_c
- χ_c slope slightly steeper than J/ Ψ

Measuring

 χ_c suppression pattern will (in)validate this

Note that direct J/ Ψ can be experimentally estimated Yield_{incl.J/ Ψ} – Yield_{$\chi c \rightarrow J/\Psi + \gamma$} – Yield_{$\Psi'$} ~ Yield_{direct J/ Ψ}

F. Fleuret, CS - LLR - 2012

F. Fleuret, CS - LLR - 2012

2. Benchmark: Measure charmonium in p+A at SPS

Nuclear

 $\beta_{\mu\mu}\sigma(J/\psi) / A (nb/nucleon)$ σ(ψ') / A (nb/nucleon) J/Ψ and Ψ' suppression in p+A **NA50** collisions as a function of L Measuring different charmonium V 0.07states gives key information on Cold 0.06 Matter and production 0.05 Glauber model mechanism. Error on Glauber model DL parametrization 0.04 5 L (fm) Euro. Phys. J. C48 (2006) 329. J/Ψ rapidity distribution in p+A 'n. HI 96/98 dN/dy (a.i collisions (asymetry wrt y_{cm}=0) p-W Measuring charmonium in a wide $x_{\rm F}$ range is important to identify possible (anti)shadowing effects -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.5 04 у_{ст}

F. Fleuret, CS - LLR - 2012

2. Measure charmonium in p+A at SPS

➔ Measuring charmonium in a wide x_F range is important to estimate possible (anti)shadowing effects

$$\sigma_A = \sigma_p * A^c$$

E866, Phys. Rev. Lett. 84, 3256-3260 (2000)

$$x_F = \frac{2M}{\sqrt{s}} \sinh y_{CMS}$$

With M=3.1 GeV/c² and $\sqrt{s=17.2 \text{ GeV}}$ (158 GeV) $x_F = 1 \implies y_{CMS} = 1.7$

With M=3.1 GeV/c² and $\sqrt{s=29.1 \text{ GeV}}$ (450 GeV) $x_F = 1 \rightarrow y_{CMS} = 2.2$ $Y_{CMS}=2 \rightarrow x_F = 0.8$

Possible to access large x_F if measuring charmonia at rapidity up to y_{CMS}^2

1. Measure χ_c production in A+A

How χ_c is suppressed relative to J/ Ψ ? What is the dependence with y, p_T , N_{part} ,...? Mandatory to draw the whole picture (SPS .vs. RHIC .vs. LHC) Benchmark 1 : Measure χ_c production within $y_{CMS} \in [-0.5, 0.5]$

2. Measure charmonia production in p+A

what is the dependence of charmonia suppression with rapidity ? Crucial to understand effects due to cold nuclear matter Benchmark 2 : Measure charmonium states within $y_{CMS} \in [-0.5, 2]$

3. Other physics subjects

Open charm, low mass resonances, Drell-Yan,...

CHIC – Expected yields

North Area Beamlines

• Need high intensity p and Pb beams (~ 10⁷ Pb/sec)

- NA50/NA60 beam line not available (NA62)
- H2 beam line occupied by NA61
- H4 and H8 available but need shielding for HI

• NA50: European Physical Journal C39 (2005) 335

- New measurement of J/ψ suppression in Pb+Pb at 158 GeV/nucleon
- 35 days of data taking in 2000
- ~1.10⁷Pb/s over 5s bursts every 20s
- 4 mm thick Pb target $(10\%\lambda_1)$
- ~ 100 000 J/ $\Psi \rightarrow \mu^+ \mu^-$ within y* \in [0,1] (on disk)
- Expect fair amount of χ_c : N_{J/ Ψ} ~ 60% direct + ~30% from χ_c + ~10% from Ψ'
 - Same conditions as NA50 setup \rightarrow ~20 000 χ_c expected within $y_{CMS} \in [-0.5, 0.5]$
 - Expect more with thicker target (1cm for instance)

CHIC – detector design

Past experiments

1st generation: NA38,NA50,NA51 Measure dimuons

2nd generation: NA60

Measure dimuons and open charm vertex

CHIC – detector design

- 3rd generation: CHIC
 - Measure dimuons and photons
 - Must place the calorimeter in front of the absorber
 - Must separate photon/electron → tracking in front of the calorimeter.

• The NA60 example

Pixel detector

- 16 planes 96 chips total
- 32 x 256 pixels / chip
- Pixel size = $425 \times 50 \ \mu m^2$

$$\frac{\Delta P}{P} \sim 6\%$$

(R. S. priv. Comm.)

The NA60 pixel detector

• Size, position, resolution : tentative design – toy

	∆M (MeV)	∆Р/Р (%)	L (cm)	В (Т)
← NA60	~120	~ 6	40	2.5
	~60	~ 2.7	60	2.5
	~30	~ 1.5	80	2.5
← сніс	~20	~1	100	2.5

Track particles within $\eta^* \in [-0.5; 1]$

F. Fleuret, CS - LLR - 2012

• Size, position, resolution : tentative design - toy

	∆M (MeV)	∆Р/Р (%)	L (cm)	В (Т)
← NA60	~120	~ 6	40	2.5
	~60	~ 2.7	60	2.5
	~30	~ 1.5	80	2.5
← сніс	~20	~1	100	2.5

Track particles within $\eta^* \in [0.5; 2]$

F. Fleuret, CS - LLR - 2012

Detector – tentative design

Vertex detector :

 $R_{min} = 0.5 \text{ cm}$ $Z_{min} = 7.5 \text{ cm}$ $R_{max} = 3.5 \text{ cm}$ $Z_{max} = 18 \text{ cm}$

Spectrometer :

 $R_{min} = 1 \text{ cm}$ $Z_{min} = 20 (100) \text{ cm}$ $R_{max} = 22 \text{ cm}$ $Z_{max} = 120 (200) \text{ cm}$

• Goal : measure $\chi_c \rightarrow J/\Psi + \gamma$

Issues

- **1.** Low energy photon (similar to $\pi^0 \rightarrow \gamma\gamma$)
- 2. High multiplicity of photon from $\pi^0 / \eta \rightarrow \gamma \gamma$
- 3. High multiplicity of charged particles ($\pi^{+/-}$)

Pythia 6.421 - p+p - \sqrt{s} = 17.2 GeV

• Goal : measure $\chi_c \rightarrow J/\Psi + \gamma$

Issues

- **1.** Low energy photon (similar to $\pi^0 \rightarrow \gamma\gamma$)
- **2.** High multiplicity of photon from $\pi^0 / \eta \rightarrow \gamma \gamma$
- 3. High multiplicity of charged particles ($\pi^{+/-}$)

- Need very high segmentation
 - to separate two electromagnetic showers
 - To isolate photons from $\pi^{+/-}$ contamination
- W + Si calorimeter à la Calice
 - 30 layers
 - 0.5 x 0.5 cm² pads

1st relevant quantity : distance between two incoming particles

- →Min. distance between 2 particles at impact
 = 1 free pad = 1 cm (for 0.5×0.5 cm²)
 →distance between two incoming particles
 must be > 1 cm
 →N photons → N/2 neutrals (π⁰ + η)→ N π^{+/-}
 → N γ + N π^{+/-} = 2N particles
 → distance between two photons
- → distance between two photons must be > 2 cm (1cm×2N/N)

• Full simulation performed with the Calice Ecal proto

3 photons with E~2 GeV distance between each photon~ 2 cm

(full simu made by D. Jeans - Calice collab.)

0.5 x 0.5 cm² pads

• Size and position : tentative design

• Size and position : tentative design

Detector – tentative design

Vertex detector :

 $R_{min} = 0.5 \text{ cm}$ $Z_{min} = 7.5 \text{ cm}$ $R_{max} = 3.5 \text{ cm}$ $Z_{max} = 18 \text{ cm}$

Spectrometer :

 $R_{min} = 1 \text{ cm}$ $Z_{min} = 20 (100) \text{ cm}$ $R_{max} = 22 \text{ cm}$ $Z_{max} = 120 (200) \text{ cm}$

Calorimeter $\Delta \gamma > 2$ cm: Rmin = 14 cm Zmin = 205 cm Rmax = 41 cm Zmax = 225 cm

Detector – absorber

Use an instrumented Fe absorber

http://newsline.linearcollider.org/archive/2010/20101104.html

Can match muon track momentum between spectrometer and trigger : **Use magnetized Fe absorber ?**

8m

mwpc's

trigger hodoscope

Detector – absorber

• Absorber size and energy loss

All $\pi^{+/-}$ stopped with a 2.0 m Fe absorber but need more Fe to stop muons from pion decay

Detector – absorber

• Absorber size and energy loss

All $\pi^{+/-}$ stopped with a 2.0 m Fe absorber but need more Fe to stop muons from pion decay \Rightarrow 2.0 m Fe $\Rightarrow \Delta E/\Delta x \sim 15.6 \times 200 \sim 3.1 \text{ GeV} \Rightarrow \mathcal{A}_{J/\Psi} \sim 18.4 \%$ \Rightarrow 3.2 m Fe $\Rightarrow \Delta E/\Delta x \sim 15.6 \times 320 \sim 5 \text{ GeV} \Rightarrow \mathcal{A}_{J/\Psi} \sim 18.0 \%$ \Rightarrow 3.8 m Fe $\Rightarrow \Delta E/\Delta x \sim 15.6 \times 380 \sim 6 \text{ GeV} \Rightarrow \mathcal{A}_{J/\Psi} \sim 17.3 \%$ \Rightarrow 4.5 m Fe $\Rightarrow \Delta E/\Delta x \sim 15.6 \times 450 \sim 7 \text{ GeV} \Rightarrow \mathcal{A}_{J/\Psi} \sim 16.1 \%$

Absorber starts @ 205 cm $\pi^{+/-}$ stop decaying after 1 λ_1 in tungsten (λ_1 ~10cm) $\rightarrow \pi^{+/-}$ stop decaying @ 2.15 m

Detector – trigger rate in Pb+Pb

• Pb Beam intensity

- − NA50 \rightarrow 5.10⁷ ions/bunch \rightarrow 10⁷ ions/sec (with a bunch time length ~ 5 sec)
- Luminosity : $\mathcal{L} = N_b x N_T = N_b x (\rho x e x \mathcal{N}_A) / A = 10^7 x (11.35 x 0.4 x 6.02 10^{23}) / 207.19 = 0.12 \mu b^{-1} s^{-1}$
- Number of min bias events (for Pb+Pb)
 - $\sigma_{\rm I} = 68.8 \text{ x } ({\rm A}^{1/3}_{\rm proj} + {\rm B}^{1/3}_{\rm targ} 1.32)^2 \rightarrow \sigma^{\rm PbPb}_{\rm minbias} = 68.8 \text{ x } (208^{1/3} + 207.19^{1/3} 1.32)^2 = 7.62 \text{ barn}$
 - Nevents/sec ~ 0.12 10⁶ x 7.62 ~ 0.9 MHz
- Event rejection :

10 000 Pb+Pb minbias events generated with EPOS 1.6

3.2m Fe abs.: $P_z > 5$ GeV/c: Trigger accepts 44/10000 events $\rightarrow N_{events}/sec \sim 0.9$ MHz x 4.4 10⁻³ ~ 4 kHz **3.8m** Fe abs.: $P_z > 6$ GeV/c: Trigger accepts 12/10000 events $\rightarrow N_{events}/sec \sim 0.9$ MHz x 1.2 10⁻³ ~ 1.1 kHz **4.5m** Fe abs.: $P_z > 7$ GeV/c: Trigger accepts 3/10000 events $\rightarrow N_{events}/sec \sim 0.9$ MHz x 3 10⁻⁴ ~ 270 Hz

CHIC – Detector design

• Primary goals :

- $\chi_c \rightarrow J/\Psi + \gamma \rightarrow \mu^+ \mu^- \gamma$ at $y_{CMS} = 0$
- $J/\Psi \rightarrow \mu^+ \mu^-$ in large y_{CMS} range

• Detector features : very compact

- 1. Spectrometer
 - Measure tracks before absorber $ightarrow \sigma_{\rm M}^{\sim} 20~{\rm MeV/c^2}$
 - Covers y_{CMS} [-0.5, 2] \rightarrow need high segmentation
 - → Silicon technologies

2. Calorimeter

- Measuring γ in high π^0 multiplicity environment
- → ultra-granular EMCal (Calice)
- 3. Absorber/trigger
 - Using 4.5 m thick Fe to absorb π/K and low P $\mu^{\text{+/-}}$
 - Can use smaller absorber if Fe magnetized
 - Trigger to be defined (expected rate = 0.3 kHz)

Expected performances

1. tracking: $\frac{\Delta P}{P} \sim 1\%$ within 1m long 2.5T \vec{B}

2. Calorimetry : $\frac{\Delta E}{E} \sim \frac{20\%}{\sqrt{E}}$

CHIC – Performances

• χ_{c2} in p+p collisions at $\sqrt{s}=17.8$ GeV

- Sample:

- 20 000 events with Pythia 6.421
- $1 \chi_{c2} \rightarrow J/\Psi \gamma \rightarrow \mu^+ \mu^- \gamma$ per event
- Smearing $\Delta P_{\mu}/P_{\mu} = 1\%$
- Smearing $\Delta E_{\gamma}/E_{\gamma} = 20\%/\sqrt{E_{\gamma}}$

- Selections :

- Keep muons w/ -0.5 < y_{cms} < 0.5
- Keep muons w/ P_z > 7 GeV
- Keep muons w/ z_{vertex} < 215 cm
- Keep photons w/ $-0.5 < y_{cms} < 0.5$
- Reject photons w/ $M_{\gamma\gamma} \in [100, 160] \text{ MeV/c}^2$
- Results : signal/bkg = 2.8
- χ_{c2} in Pb+Pb at $\sqrt{s}=17.8$ GeV
- Sample:
 - 10 000 events minbias with Epos 1.6
 - 1 pythia χ_{c2} embedded in each event
 - Same selections as in p+p
 - Reject γ if not in the same emisphere as J/Ψ
 - Results : signal/bkg = 3.6

Conclusion

- Déjà beaucoup de données sur le J/Ψ à différentes énergies, d'autres à venir
- Toujours difficile à comprendre:
 - A-t-on vu la suppression séquentielle ?
 - A-t-on vu la régénération ?
- La mesure du χ_c est une étape essentielle (et nécessaire)
- Le SPS est le meilleur endroit pour commencer
- C'est aujourd'hui faisable

• Programme pour 2012

- Promotion du projet : séminaires, conférences
- Recherche de partenaires
- Première version d'un framework de simulation
- Évaluation des technologies (tracking, muons)
- Échelle de temps < 10 ans (~3 construction)
- Échelle de prix ~3 4 M€

• Demandes :

- Quelques aides ponctuelles
- Des encouragements

Conclusion

Expression of Interest

CHIC: Charm in Heavy Ion Collisions

Study of charm production with proton and heavy ion beams at the CERN SPS

E. G. Ferreiro, Universidad de Santiago de Compostela, Spain F. Fleuret, LLR-École polytechnique, CNRS/IN2P3, Palaiseau, France

Abstract

We propose a third generation experiment devoted to the measurement of open and hidden charm production in heavy ion collisions. The specific purpose of this experiment is to measure $\chi_c \rightarrow J/\psi + \gamma$ in the very busy environment produced in Pb+Pb collisions. This will lead to the first observation of charmonium sequential suppression in a Quark Gluon Plasma.