

The J/ Ψ adventure

J/Ψ simultaneously discovered in november 1974 Ting et al. at the Brookhaven National Laboratory Richter et al. at the Stanford Linear Accelerator

F. Fleuret - LLR

Bielefeld, sept 05

Introduction

J/Ψ (prod in A-A) has been and is studied at :
 – SPS (CERN) : NA38, NA50, NA60 (fixed target)

- RHIC (BNL) : PHENIX (collider)

• J/ Ψ studied for QGP started in 1986

– Almost 20 years ago...

- Plan for this lecture
 - Will follow history
 - ✓ J/ Ψ study at SPS
 - ✓ J/ Ψ study at RHIC
 - \checkmark Few words about future
 - Note : won't talk much about theory (see H. Satz's lecture)

Introduction

of certer of ac

- Why charmonia ?
 - Bound $c\overline{c}$ state \rightarrow should melt in a QGP
 - Matsui and Satz 1986
 - ✓ From their abstract (Phys. Lett. B 178 (1986) 416)
 ★ If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents cc binding in the deconfined interior of the interaction region .../... It is concluded that J/Ψ suppression in nuclear collisions should provide an unambiguous signature of quark-glun plasma formation.

J/Ψ study at SPS

Outer Arc —

• NA38 : the experiment

- Proposed in march 1985
- Study thermal dimuon production
- Start study J/ Ψ production after Matsui-Satz's prediction

First results O-U and S-U

• First observation of the J/ Ψ suppression

2 issues here :

1. What is plotted

- 1. $\sigma_{J/\Psi}/\sigma_{cont}$
- 2. What is continuum ?

Is it a signal of QGP?

- p-Cu ≠ p-U
 - No plasma in p-A
 - Normal behaviour ?

1. What is plotted

Outer Arc —

They measured signal/continuum (2.7-3.5)
 – Example : 200 GeV O-U reactions

Bielefeld, sept 05

F. Fleuret - LLR

2. Proton-nucleus data

 Systematic study of p-A (qu) pi450 GeV/ci-p.d (NA51) Bo(J/w)/A pi460 GeV/kt-C.AICU.W (NASS) -A = p,d,C,AI,Cu,W6 - Observe a suppression 5 - $\sigma_{J/\psi}(pA) = \sigma_{J/\psi}(pp) \times A^{\alpha}$ $\alpha = 0,919 \pm 0,015$ 3 -

 J/Ψ is suppressed in « normal » nuclear matter

10

Back to J/Ψ suppression

All data follow the power law

p-A 450 GeV from NA38: 1st p-A sample (1987)

pp, p-d 450 GeV from NA51: collected in 1992

p-A 200 GeV secondary beam collected in 1987/88 and A-B 200 GeV (1986/1990)

Separate fit of $B_{\mu\mu}\sigma_0(A \times B)^{\alpha-1}$: α_{450} and α_{200} compatible

"Simultaneous" fit (same α) \rightarrow rescaling 450 \searrow 200 GeV

Back to J/Ψ suppression

• All data follow the power law

What is the normal suppression ?

Nuclear matter absorption framework

Introducing L L is the « length » of nuclear matter seen by the J/ Ψ

 $\sigma_{\psi}(AB) \propto (AB) exp(-\rho_0 \sigma_{abs} \bar{L})$

 ρ_0 =average nucleon density σ_{abs} = absorption cross-section

Summary of NA38

Outer Arc ---

- NA38 took p-A data and O-Cu, O-U, S-U data

– A suppression is observed, but this suppression can be interpreted as the interaction of the J/ $\!\Psi$ with the nuclear matter

- We need to use a bigger system to reach the critical temperature.

08

\rightarrow NA50 experiment

J/Ψ at SPS

NA50 experiment

- Same spectrometer as NA38
- New detectors within target region
- Pb-Pb data

Data : (450 GeV → √s=29.1 GeV) (158 GeV → √s=17.3 GeV) Pb-Pb 158 GeV/A (1995-00) p-A 450 GeV (1996-00)

Additionnal zero degree calorimeter Additionnal multiplicity detector

Additionnal J/Y suppression

Anomalous J/Ψ suppression

First conclusions

and the second se

• While NA38 data from p-p to S-U can be understood considering a normal J/Ψ suppression by its absorption within nuclear matter,

oar en 👩 🔰

- NA50 Pb-Pb data exhibit an anomalous suppression which cannot be understood within the normal absorption framework.
- Can we get more information ? → look at data as a function of centrality

• Another requisite

V ...

- Hard to measure Ψ cross section as a function of centrality, we have to take into account :
 ✓ Uncertainties on luminosity measurement
 - ✓ Errors on efficiencies
 - ✓ Errors on centrality measurement
 - ✓ Effective AB calculation is model dependent

– There is a way \rightarrow go back to the mass spectrum

F. Fleuret - LLR

F. Fleuret - LLR

Outer Are ----

• Drell-Yan is under control

Study Ψ/drell-Yan

Guter Are —.

New NA50 data taking

✓ New high intensity (high statistics) runs

F. Fleuret - LLR

Last NA50 results

Guter Arc —

Quick look at the Ψ'

Outer Are —

Interpretations : 2 frameworks

• 1) yes, the J/ Ψ suppression observed by NA50 is a signal of the QGP

• 2) no, the J/ Ψ suppression observed by NA50 is NOT a signal of the QGP

– Won't talk about 1) \rightarrow see H. Satz's lecture

- Let's have a quick look at option 2).

The alternative : comovers

• Suppression by hadron interactions

– After the normal absorption in the nuclear environment, the survived J/ Ψ 's interact with secondary hadrons:

 $J/\Psi + h \rightarrow DD$

ver en 🛯 👘

- Crucial parameter : <u>J/Ψ-hadron inelastic cross-section</u>,
- (σ_{co}) a very uncertain parameter !
- Theoretical estimates : $\sigma_{co} \sim 0.1-1$ mb

- <u>Common assumptions</u>: the density of the hadron gas decreases as $1/\tau$; the interactions stop at the freeze-out.

The alternative : comovers

• Comovers can fit NA50 data σ_{abs} = 4,5 mb (pA) and σ_{co} = 0,65 mb (PbPb)

• Starting from here, most of the results

- are preliminary

– Follow the sign \rightarrow

- Have been presented at Quark Matter 2005

WARNING

- They need to be confirmed !!

oven til 11

J/Ψ at SPS

NA60 experiment

 Same spectrometer as NA50 (NA38)
 New vertex tracker

Data : p-A (2002) In-In 158 GeV/A (2003) p-A (2004)

~2 m

Mass spectrum

At SPS energies, the reference process commonly used to quantify J/ψ suppression versus centrality is Drell-Yan \rightarrow Drell-Yan production scales with the number of binary N-N collisions

Bielefeld, sept 05

J/Y standard analysis

Anomalous J/ψ suppression is present in In-In collisions

Direct J/Y sample

• To overcome the problem of DY statistics, directly compare the measured J/ψ centrality distribution with the distribution expected in case of pure nuclear absorption

Bielefeld, sept 05

F. Fleuret - LLR

Check of the method

Outer Are --

Bielefeld, sept 05

F. Fleuret - LLR

Comparison with comovers

SPS summary

- 18 years of data (NA38, NA50, NA60)
- Observe
 - J/ Ψ absorption by nuclear matter for light systems
 - Anomalous suppression in Pb-Pb data (NA50)
 - Anomalous suppression in In-In data (NA60)
- Interpretation
 - So far, hadronic scenarii can't reproduce the data
 - Room for QGP (see H. Satz lecture)
- Now : RHIC time

• J/ Ψ study at RHIC done with PHENIX

J/Y at RHIC

Central arms: hadrons, photons, <u>electrons</u> $J/\Psi \rightarrow e^+e^-$

Muon arms: <u>muons</u> at forward rapidity $J/\Psi \rightarrow \mu^+\mu^-$

Data : p-p √s=200 GeV (2000-05) d-Au √s=200 GeV (2003) AuAu √s=200 GeV (2002/04)

Cu-Cu $\sqrt{s}=200 \text{ GeV}/62 \text{ GeV}$ (2005)

Results with PHENIX

Outer Are ----

Comparison with comovers

Comovers don't fit the data

Bielefeld, sept 05

F. Fleuret - LLR

Comparing SPS and RHIC

- When comparing NA50
 and PHENIX
 - Suppression level is similar
- But
 - Are we comparing apple to apple ?
 - Several things are different
 - ✓ Energy
 - ✓ Rapidity window
 - Several things can change
 - ✓ J/ Ψ production mechanism
 - ✓ J/ Ψ suppression mechanism

J/ψ nuclear modification factor R_{AA}

J/Y production mecanism

• Shadowing

- Nuclear shadowing is an initial-state effect on the parton distributions.
- Gluon distribution function can be different when comparing proton and nucleus.

"small momentum quarks and gluons, because of the uncertainty principle, spread over a distance comparable to the nucleon-nucleon separation. Quarks and gluons from different nucleons can overlap spatially and fuse, thus increasing the density of high momentum partons [anti-shadowing] at the expense of that of lower momentum ones [shadowing]"

 $\boldsymbol{\mathscr{X}}$ is the momentum fraction of the nucleon that a parton (quark or gluon) carries.

F. Fleuret - LLR

Shadowing at RHIC

Shadowing at RHIC

Guter Arc —

- PHENIX d-Au results
 - Some gluon (anti)shadowing is « visible » in d-Au data
 - What about SPS ?
 - σ_{abs} seems lower than @ SPS
 - ✓ ~1 mb (~4mb at SPS)
 - Dependance with centrality
 ✓ Will affect Au-Au and Cu-Cu data

Shadowing at RHIC

Guter Arc —

• PHENIX Au-Au and Cu-Cu results

Curve Includes nuclear absorption and gluon shadowing.
 ✓ But here σ_{abs} is taken too large (3 mb)

Comparing SPS and RHIC

~ same suppression at SPS and RHIC
 – We expected a much bigger suppression at RHIC

Recombination

Guter Arc —

At RHIC energies Number of c̄ up to 14 in central collision ✓ A c can combine with a ̄ to form a J/Ψ → increase J/Ψ production cross-section

TABLE I: Centrality bin, number of NN collisions, nuclear overlap function, charm cross section per NN collision, and total charm multiplicity per NN collision, in $\sqrt{s_{NN}} = 200 \text{ GeV Au}+\text{Au}$ reactions.

Cen-	N_{coll}	T_{AA}	$\frac{1}{T_{AA}} \frac{dN_{c\overline{c}}}{dy} _{y=0}$	$N_{c\overline{c}}/T_{AA}$
trality		(mb ⁻¹)	(µb)	(µb)
min. bias	258 ± 25	$6.14{\pm}0.45$	$143 \pm 13 \pm 36$	$622{\pm}57 \pm 160$
0-10~%	955 ± 94	22.8 ± 1.6	$137 \pm 21 \pm 35$	$597 \pm 93 \pm 156$
10-20~%	603 ± 59	$14.4 {\pm} 1.0$	$137 \pm 26 \pm 35$	$596 \pm 115 \pm 158$
20-40%	297 ± 31	$7.07{\pm}0.58$	$168 \pm 27 \pm 45$	$731 \pm 117 \pm 199$
40-60~%	91 ± 12	$2.16{\pm}0.26$	$193 {\pm} 47 {\pm} 52$	$841 \pm 205 \pm 232$
60-92~%	14.5 ± 4.0	$0.35 {\pm} 0.10$	$116 \pm 87 \pm 43$	$504 \pm 378 \pm 190$

i center of dit.

Recombination ?

Guter Arc —

Seems to work – How can we test ?

J/ψ nuclear modification factor R_{AA}

J/ψ nuclear modification factor R_{AA}

Testing recombination

- If charm flows, J/Ψ from recombination should flow.
- Directly produced J/ Ψ shouldn't flow.
- Need to measure J/ Ψ v₂ and compare to charm v₂

Percolation ?

- Centerline of UZI

– See H. Satz's lecture

 « parton percolation is a geometric, pre-equilibrium form of deconfinement »

 « an essential prerequisite for QGP production is cross-talk between the partons from different nucleons »

osten 114.

Percolation at SPS

Outer Arc —

Percolation at RHIC

Guter Arc —.

F. Fleuret - LLR

RHIC summary

- A lot of new (exciting) results at QM05
 - Comovers seem to be ruled out
 - Some gluon shadowing seems to be observed with d-Au data

Suppression observed in AuAu and CuCu data
 Same magnitude as SPS suppression
 Models without recombination of charm quarks are enable (so far) to account for the data

- More work to do
 - For theorists
 - For experimentalists

What about Y?

1st Upsilons at RHIC !

F. Fleuret - LLR

The future at RHIC

Guter Arc —

- Next 4 years plan (before RHIC II)
 - Factor 2 increase in heavy ion luminosity
 - Factor 6 increase in proton luminosity

Heavy ions at LHC

Outer Are —

Heavy flavor measurements

- Acceptance
 - Complementarity between the 3 experiments
 - ATLAS & CMS acceptance is large in η & limited to high p_T

– ALICE is limited in η but cover down to very low p_T

Quarkonia measurements in ATLAS

Bielefeld, sept 05

F. Fleuret - LLR

Quarkonium measurements in CMS

Quarkonium measurements in ALICE

Bielefeld, sept 05

F. Fleuret - LLR

Conclusion

• 20 years of results

- Big experimental effort @ SPS and RHIC
- Big theoretical effort (melting, recombination, percolation, comovers...)
- Lot of things still need to be done (both in theory and experiments)
- Future : psi and upsilon adventure
 - ✓ RHIC and LHC

