HARPO : a TPC as a γ-Ray Telescope and Polarimeter

In the e^+e^- pair creation regime

Denis Bernard, Philippe Bruel, Mickael Frotin, Yannick Geerebaert, Berrie Giebels, Philippe Gros, Deirdre Horan, Patrick Poilleux, Igor Semeniouk, Shaobo Wang a

aLLR, Ecole Polytechnique and CNRS/IN2P3, France

Shebli Anvar, David Attié, Paul Colas, Alain Delbart, Patrick Sizun b

bIRFU, CEA Saclay, France

Diego Götz b,c

cAIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d’Astrophysique, CEA Saclay, France

SPIE Astronomical Telescopes + Instrumentation,
Ultraviolet to gamma ray,
Palais des congrès de Montréal, Montréal, Québec, Canada ; 22 - 27 Juin 2014

llr.in2p3.fr/~dbernard/polar/harpo-t-p.html
Science Case

- **Non polarized astronomy**:
 - Improve *angular resolution* – crowded sky regions

 \[\text{Fermi/LAT} \quad \text{V. Schönfelder, New Astr. Rev. 48 (2004) 193}\]

 - Solve *sensitivity* gap between Compton and pair telescopes
 - Actually Fermi is publishing mostly in the range \(0.1 - 300\text{GeV}\)
 - Improvement expected from PASS8, [Poster 9144-131] Carmelo Sgrò

- **Polarimetry**: No \(\gamma\) polarimeter above 1 MeV in space ever
 - Astrophysics: understand working mechanism(s) of \(\gamma\) cosmic sources
 - Cosmo / New Physics: LIV: Search for Lorentz Invariance Violation

 [Post-Fermi talk by Eric Charles on Sunday 9144-13]
Science Case: Polarimetry: Astrophysics

- One example: Blazar (AGN with jet pointing to us): decipher leptonic synchrotron self-Compton (SSC) against hadronic (proton-synchrotron) models
 - high-frequency-peaked BL Lac (HBL)
 - X band: 2 - 10 keV
 - γ band: 30 - 200 MeV
- SED’s indistinguishable, but
 - X-ray: $P_{\text{lept}} \approx P_{\text{hadr}}$
 - γ-ray: $P_{\text{lept}} \ll P_{\text{hadr}}$

H. Zhang and M. Böttcher, A.P. J. 774, 18 (2013)
Way Out : Use a Thin, Homogeneous Detector and Optimal Fits

Angular resolution

- nucleus recoil $\propto E^{-5/4}$
- multiple scattering (optimal fits) $\propto E^{-3/4}$

point-source differential sensitivity

limit detectable E^2dN/dE, à la Fermi : 4 bins/decade, 5σ detection, $T = 3$ years, $\eta = 0.17$ exposure fraction, $\geq 10\gamma$. “against” extragalactic background

- Sampling pitch $l = 1\text{mm}$, point resolution $\sigma = 0.1\text{mm}$

D.B. NIM A 701 (2013) 225
Polarimetry

- Modulation of azimuthal angle distribution

\[
\frac{d\Gamma}{d\phi} \propto (1 + \mathcal{A}P \cos [2(\phi - \phi_0)]),
\]

\[
\sigma_P \approx \frac{1}{\mathcal{A}} \sqrt{\frac{2}{N}},
\]

- \(P \) source linear polarisation fraction
- \(\mathcal{A} \) Polarization asymmetry
- \(\phi \) azimuthal angle
Conversion in a Slab and Multiple Scattering: Dilution of the Polarisation Asymmetry

- \((1 + \mathcal{A} P \cos [2(\phi)]) \otimes e^{-\phi^2/2\sigma^2_\phi} = (1 + \mathcal{A} e^{-2\sigma^2_\phi} P \cos [2(\phi)])\)

\[\Rightarrow A_{\text{eff}} = \mathcal{A} e^{-2\sigma^2_\phi}\]

- Azimuthal angle RMS \(\sigma_\phi = \frac{\theta_{0,+} \oplus \theta_{0,-}}{\hat{\theta}_{+-}}\),

- \(\theta_0 \approx \frac{13.6 \text{ MeV/c}}{\beta p} \sqrt{x/X_0}\),

- Most probable opening angle \(\hat{\theta}_{+-} = 1.6 \text{ MeV}/E\)

\[\Rightarrow \sigma_\phi \approx 24 \text{ rad} \sqrt{x/X_0}\]

- This dilution is energy-independent.

Conventional wisdom: \(\gamma\) polarimetry impossible with nuclear conversions \(\gamma Z \rightarrow e^+ e^-\)

\(\text{e.g. Mattox J. R. Astrophys. J. 363 (1990) 270, and refs therein}\)

Very thin Si detectors are being considered though, e.g. PANGU talk by Meng Su on Sunday [9144-130].

But Harvard talk: Silicon: 2 single sided SSD of 150 \(\mu\)m each? And how solve the \(x, y\) two track ambiguity?
\textit{\textbf{\gamma Polarimetry with a Homogeneous Detector and Optimal Fits}}

- $\sigma_\phi = \frac{\sigma_{\theta,e^+} \oplus \sigma_{\theta,e^-}}{\hat{\theta}_{+-}}$, azimuthal angle resolution

- $\sigma_{\theta,\text{track}} = (p/p_1)^{-3/4}$, angular resolution due to multiple scattering

- $p_1 = 13.6 \text{ MeV}/c \left(\frac{4\sigma^2 l}{X_0^3} \right)^{1/6}$, Argon ($\sigma = l = 1 \text{ mm}$): $p_1 = 50 \text{ keV}/c$ (1 bar), $p_1 = 1.45 \text{ MeV}/c$ (liquid).

- $\hat{\theta}_{+-} = 1.6 \text{ MeV}/E$, most probable opening angle

- $\sigma_\phi = \left[x_+^{-\frac{3}{4}} \oplus (1-x_+)^{-\frac{3}{4}} \right] \frac{(p_1)^{\frac{3}{4}}E^{\frac{1}{4}}}{1.6 \text{ MeV}}$, azimuthal angle resolution

- x_+ fraction of the energy carried away by the positron,

There is hope .. at low p_1 (gas) .. at low energy.

Also need study beyond the most probable opening angle $\theta_{+-} = \hat{\theta}_{+-}$ approximation

D.B. NIM A 729 (2013) 765
Developed, Validated, Event Generator

- Development of a full (5D) exact (down to threshold) polarized evt generator
- Variables: azimuthal ($\phi_+, \phi_-)$ and polar (θ_+, θ_-) angles of e^+ and e^-, and $x_+ \equiv E_+/E$

Uses:
- HELAS amplitude computation
 H. Murayama, et al., KEK-91-11.
- SPRING event generator
- Validation against published 1D distributions (nuclear and triplet conversions)

D.B. NIM A 729 (2013) 765
Dilution of Polarization Asymmetry due to Multiple Scattering: Optimal Fits and Full MC

- Remember: track angular resolution \((p/p_1)^{-3/4}\), \(p_1 = 13.6\ \text{MeV}/c\left(\frac{4\sigma^2 l}{X_0^3}\right)^{1/6}\)

\[D \equiv \frac{A_{\text{eff}}(p_1)}{A(p_1 = 0)} \]

Energy variation of \(D\) for various values of \(p_1(\text{keV}/c)\)

- Curves are \(D(E, p_1) = \exp \left[-2(a p_1^b E^c) \right] \) parametrizations, \(a, b, c\) constants
- Liquid: nope \((\text{Ar}, p_1 = 1.45\ \text{MeV}/c)\); gas: Possible! \((1\ \text{bar}, p_1 = 50\ \text{keV}/c)\)

D.B. NIM A 729 (2013) 765
Polarimetry Performance : 1 : no Experimental Cuts

- Crab-like source, $T = 1$ year, $V = 1 \text{ m}^3$, $\sigma = l = 0.1 \text{ cm}$, $\eta = \epsilon = 1$.
- A_{eff} (thin line), σ_P (thick line);

- Argon, 5 bar, $\sigma_P \approx 1.0\%$, $A_{\text{eff}} \approx 15\%$

D.B. NIM A 729 (2013) 765
Polarimetry Performance : 2 : Experimental Cuts

- photon-source assignment selection $\theta_{pair} < 10^\circ$
- opening angle $\theta_{+-} > 0.1 \text{ rad}$
- lepton (kinetic) energy cut (5 bar argon, 0.5 MeV \propto path length $\approx 30 \text{ cm}$).
 \[\sigma_P \approx 1.0\% \rightarrow 1.4\% \]
- expressing the track E cut as a pathlength Λ cut (argon):

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure}
\caption{Graph showing the relationship between σ_P and Λ for liquid and 5 bar gas.}
\end{figure}

- polarimetry with a dense detector (liquid / solid TPC, scintillator cube) would imply efficient trigger / tracking / selection of cm long tracks.
- A stack of hyper-thin Si wafer could be considered homogeneous, and if spaced far enough .. low density .. enough?
HARPO : the Demonstrator

- Time Projection Chamber (TPC)
- (30 cm)3 cubic TPC
- Up to 5 bar.
- Micromegas + GEM gas amplification
- Collection on x, y strips, pitch 1 mm.
- AFTER chip digitization, up to 50 MHz.
- Scintillator / WLS / PMT based trigger

- micromegas + (1 or 2) GEM
 55Fe & cosmics characterization
 Ph. Gros, TIPP2014
Event Reconstruction

raw “maps” track time spectra \((x, y\) matching)

- Evt reco of a cosmic ray traversing the TPC, emission of a \(\delta\) ray
- Track pattern recognition by combinatorial Hough transform
- \(x, y\) two track ambiguity solved by track time spectra matching
- 2 bar (Ar :95 Isobutane 5 %), shaping 100 ns.
Conclusion

A thin active target such as a gas TPC is THE detector for γ astronomy in the e^+e^- with utmost performance in the [MeV - GeV] photon energy range,

- Angular resolution improvement by ≈ 1 order of magnitude w.r.t. the Fermi LAT within reach.
 @ 100 MeV, 5 bar argon, recoil \approx MS, 0.4° in total
 Therefore, powerful Background rejection
 And rejection of atmospheric photons and of cosmic rays is straightforward

- Full sky, 4π acceptance
 (.. if on a high orbit)

- Huge sensitivity improvement, closes the sensitivity gap between (Compton and W/Si pair) telescopes

- Provides, for the first time, polarimetry above 1 MeV!

- The HARPO demonstrator built and characterized with cosmic rays.

Preparation of data taking @ NewSUBARU Japan in Nov 2014 is in progress.
((almost) fully polarized γ beams 2 – 76 MeV)
3 layers, each layer of 2 back-to-back modules, each module a \((2 \text{ m})^2 \times 0.5 \text{ m}\) TPC with an endplate segmented into \((33 \text{ cm})^2\) micromegas and charge collection blocks. 432 chips, \((12 \text{ m})^3\) : 100 kg gas at 5 bar.

Conversions of a 100 MeV (left) and of a 10 MeV (right) photon in the TPC gas

\textit{Je vous remercie de votre attention.}
Back-up Slides
Thin / Thick Detectors, Effective Area

<table>
<thead>
<tr>
<th></th>
<th>Thick</th>
<th>Thin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion prob.</td>
<td>$p \approx 1$</td>
<td>$p \ll 1$</td>
</tr>
<tr>
<td>Effective area</td>
<td>$\approx S \times \epsilon$</td>
<td>$\approx H \times M \times \epsilon$</td>
</tr>
<tr>
<td>Conversion proc.</td>
<td>compete</td>
<td>don’t compete</td>
</tr>
<tr>
<td>(pair, triplet, Compton)</td>
<td></td>
<td>with each other</td>
</tr>
</tbody>
</table>

- H photon attenuation, M detector mass, S surface, ϵ reconstruction efficiency
- Thin techno prevents γ loss due to Compton in low Z material at low E
- High E asymptote $A_{\text{eff}} = 3.6 \text{m}^2/\text{ton}$ (Nuclear, Argon)

$A_{\text{eff}} / M (\text{cm}^2 / \text{g})$ vs $E (\text{MeV})$: Compton, Nucl., Triplet, Xe, Ar, Ne
Which Pressure?

- **Science.** Rising the pressure:
 - degrades the angular resolution and (mildly) point like source sensitivity
 - Increases the effective area improves the precision on the polarization

- Maximum **micropattern gas amplification gain** (micromegas, GEM) known to decrease with pressure .. but dE/dx increases ..

micropattern gas amplification above 10 bar a concern, unless very small gap devices can be produced.

- **Vessel Mass** \propto gas mass to 1rst order.
 - For a given mission : which limit will we touch first (volume, mass) ?

In this talk examples were given at 1, 5, 10 bar
Pressure Vessel: a Naive Static Study

\[
P \quad \text{Alloy} \quad 0.2\% \text{ yield} \quad @ \ T \quad \text{safety} \quad \phi \quad t \quad t \quad M \\
5 \text{ bar} \quad 6\text{Al-V4} \quad 750 \text{ MPa} \quad 150^\circ \text{C} \quad 1.6 \quad 3000 \text{ mm} \quad 4 \text{ mm} \quad 5.5 \text{ mm} \quad 1110 \text{ kg}
\]

No re-inforcement of any kind at the moment.

TPC gas 100 kg
outside gas 150
vessel 1110
PCB 142
Scintillator veto 300 ?
electronics ?
support ?
gas system ?
\[
\text{total} \quad \geq \quad 1800 \quad \text{kg}
\]

Behavior upon launch?
A γ Nuclear Conversion in a 30 cm 5 bar Argon TPC

$$\gamma \rightarrow Z^{e^+ e^- Z}$$

(10 MeV) (4.3 MeV) (5.7 MeV)

(EGS5)
Search for Axions

- Scalar field associated with $U(1)$ symmetry devised to solve the strong CP problem.
- Couples to 2γ through triangle anomaly.
- γ propagation through $B \Rightarrow$ Dichroism $\Rightarrow E$ dependant rotation of linear polarization \Rightarrow linear polarization dilution.

$$g_{a\gamma\gamma} \leq \frac{\pi m_a}{B \sqrt{\Delta \omega L_{GRB}}}$$

- Saturation over $L = 2\pi \omega/m_a^2 > L_{GRB}$ for $m_a \leq \sqrt{2\pi \omega \Delta \omega L_{GRB}}$

and the limit $g_{a\gamma\gamma}$ reaches a ω-independent constant.

Optimal Track Fit with Multiple Scattering Cross Validation

- 5 bar argon, $\sigma = l = 0.1\text{cm}$; \[p_1 = 13.6\text{MeV}/c \left(\frac{4\sigma^2 l}{X_0^3} \right)^{1/6} = 112\text{keV}/c \]

- 40 MeV/c electrons, $\sigma_{\theta t} = (p/p_1)^{-3/4} = 12.2\text{mrad}$

Smoothed angle residues RMS for track fits with a Kalman filter.

D.B. NIM A 729 (2013) 765
Evt Generator : One Example of Validation Plot

- Triplet conversion: cross section for recoil electron momentum larger than q_0, $\sigma(q > q_0)$, as a function of q_0/mc, for various photon energies E;

Compared with:

Track Momentum Measurement in TPC Alone from Multiple Estimations of Multiple Scattering

- multiple scattering $\theta_0 \propto 1/p \Rightarrow p \propto 1/\theta_0$ [G. Molière, Zeit. Naturforschung A, 10 (1955) 177.]

- optimization of track step size

$$\Rightarrow \frac{\sigma_p}{p} \propto \frac{1}{\sqrt{L}} \left[\frac{p \sigma \sqrt{X_0}}{13.6\text{MeV}/c} \right]^{1/3}$$

E range of interest

Relative precision

<table>
<thead>
<tr>
<th>p (MeV/c)</th>
<th>σ_p/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>10</td>
<td>0.04</td>
</tr>
<tr>
<td>100</td>
<td>0.05</td>
</tr>
<tr>
<td>1000</td>
<td>0.06</td>
</tr>
</tbody>
</table>

- Ne
- Ar
- Xe

H/E^2 (cm2/g MeV2)

- Ne
- Ar
- Xe

Triplet

D.B. NIM A 701 (2013) 225
TPC-Based γ-Ray Telescope Projects

.. Most likely not exhaustive..

AdEPT
NASA
et al.

HARPO
LLR & Irfu CEA/Saclay

μ PIC
Kyoto U.
et al.

S. D. Hunter
Proc. of SPIE Vol. 7732 773221-7

D.B.
Pisa2012 & NIM A 718 (2013) 395

K. Ueno
Vienna 2010
Polarimetry : Optimal Measurement

- Remember, fit of
 \[\frac{d\Gamma}{d\phi} \propto (1 + AP \cos[2(\phi)]) \]
 yields
 \[\sigma_P \approx \frac{1}{A} \sqrt{\frac{2}{N}}, \]

- Optimal measurement ; \(\Omega\)
 - let’s define \(p(\Omega)\) the pdf of set of (here 5) variables \(\Omega\)
 - search for weight \(w(\Omega)\), \(E(w)\) function of \(P\), and variance \(\sigma_P^2\) minimal ;
 - a solution is
 \[w_{\text{opt}} = \frac{\partial \ln p(\Omega)}{\partial P} \]
 e.g. : F. V. Tkachov, Part. Nucl. Lett. 111, 28 (2002)
 - polarimetry : \(p(\Omega) \equiv f(\Omega) + P \times g(\Omega)\),
 \(w_{\text{opt}} = \frac{g(\Omega)}{f(\Omega) + P \times g(\Omega)}\).

- If \(A \ll 1\), \(w_0 \equiv 2 \frac{g(\Omega)}{f(\Omega)}\), and

- for the 1D “projection” \(p(\Omega) = (1 + AP \cos[2(\phi)])\) :
 \[w_1 = 2 \cos 2\phi, \quad E(w_1) = AP, \quad \sigma_P = \frac{1}{A\sqrt{N}} \sqrt{2 - (AP)^2}, \]

D.B. NIM A 729 (2013) 765
Polarimetry : Optimal Measurement

- Full MC, nuclear conversion

- **1D** weight : validation $\sqrt{2}$

- **5D** weight :
 - similar polarization asymmetry A ($\approx 15\%$ asymptotically at high E)
 - gain factor > 2 on precision σ_P w.r.t. 1D weight,
 - ability to measure precisely the 5D final state?

D.B. NIM A 729 (2013) 765
Polarimetry: Effects of Experimental Cuts

- opening angle, \(\theta_{+-} > 0.1 \text{ rad} \) (easy pattern recognition)
- source selection \(\theta_{\text{pair}} < 10^\circ \)
- kinetic leptons energy \(E_{\text{kin}} > 0.5 \text{ MeV} \), (path length in 5 bar argon \(\approx 30 \text{ cm} \))

- All cuts: \(\epsilon = 45\% \), (1D) \(A_{\text{eff}} \approx 16.6\% \) \(\sigma_P \approx 1.4\% \),

D.B. NIM A 729 (2013) 765
Polarimetry with Compton Scattering Events at High Energy

Minimum detectable polarization

Compton polarization asymmetry

M. L. McConnell, J. M. Ryan

Long Term Work with Gas Detector in Space

- Our present “ground” demonstrator is rather dirty (scintillator, WLS, PCB, glue ..)
- Sealed operation, no recirculation.
 ⇒ After one month of working, it showed significant absorption over 30 cm drift length
- Obvious cure would be recirculating / purifying the gas.
- An other option is to separate “clean” and “dirty” volumes by a ceramic foil

- Obviously the collecting board is on the “dirty” side
- The signal is then read through capacitive coupling