$HARPO: a \ TPC \ as \ a \ \gamma$ -Ray Telescope and Polarimeter In the e^+e^- pair creation regime

Denis Bernard, Philippe Bruel, Mickael Frotin, Yannick Geerebaert, Berrie Giebels, Philippe Gros, Deirdre Horan, Patrick Poilleux, Igor Semeniouk, Shaobo Wang ^a ^aLLR, Ecole Polytechnique and CNRS/IN2P3, France

> Shebli Anvar, David Attié, Paul Colas, Alain Delbart, Patrick Sizun ^b ^bIRFU, CEA Saclay, France

Diego Götz ^{b,c} ^cAIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d'Astrophysique, CEA Saclay, France

> SPIE Astronomical Telescopes + Instrumentation, Ultraviolet to gamma ray, Palais des congrès de Montréal, Montréal, Québec, Canada; 22 - 27 Juin 2014

> > $llr.in2p3.fr/{\sim}dbernard/polar/harpo-t-p.html$

Science Case

- Non polarized astronomy :
 - Improve angular resolution crowded sky regions

- Solve sensitivity gap between Compton and pair telescopes
 - Actually Fermi is publishing mostly in the range $0.1 300 {
 m GeV}$
 - Improvement expected from PASS8, Poster [9144-131] Carmelo Sgrò
- **Polarimetry** : No γ polarimeter above 1 MeV in space ever
 - Astrophysics : understand working mechanism(s) of γ cosmic sources
 - Cosmo / New Physics : LIV : Search for Lorentz Invariance Violation

Post-Fermi talk by Eric Charles on Sunday [9144-13]

Science Case : Polarimetry : Astrophysics

- One example : Blazar (AGN with jet pointing to us) : decipher leptonic synchrotron self-Compton (SSC) against hadronic (proton-synchrotron) models
 - high-frequency-peaked BL Lac (HBL)
 - X band : 2 -10 keV
 - γ band : 30 200 MeV
- SED's indistinguishable, but
- X-ray : $P_{\text{lept}} \approx P_{\text{hadr}}$
- γ -ray : $P_{
 m lept} \ll P_{
 m hadr}$

H. Zhang and M. Böttcher, A.P. J. 774, 18 (2013)

RX J0648.7+1516

Way Out : Use a Thin, Homogeneous Detector and Optimal Fits

Angular resolution

- nucleus recoil $\propto E^{-5/4}$
- multiple scattering (optimal fits) $\propto E^{-3/4}$

point-source differential sensitivity

limit detectable $E^2 dN/dE$, à la Fermi : 4 bins/decade, 5σ detection, T = 3 years, $\eta = 0.17$ exposure fraction, $> 10\gamma$. "against" extragalactic background

• Sampling pitch $l = 1 \mathrm{mm}$, point resolution $\sigma = 0.1 \mathrm{mm}$

Validation of optimal fit performance with Kalman filter [D.B. NIM A 729 (2013) 765]

Polarimetry

• Modulation of azimuthal angle distribution

- -P source linear polarisation fraction
- \mathcal{A} Polarization asymmetry
- ϕ azimuthal angle

• This dilution is energy-independent.

Conventional wisdom : γ polarimetry impossible with nuclear conversions $\gamma Z
ightarrow e^+e^-$

Very thin Si detectors are being considered though, e.g. PANGU talk by Meng Su on Sunday [9144-130]. But Harvard talk : Silicon : 2 single sided SSD of $150 \ \mu m$ each? And how solve the x, y two track ambiguity?

e.g. Mattox J. R.Astrophys. J. 363 (1990) 270, and refs therein

γ Polarimetry with a Homogeneous Detector and Optimal Fits

azimuthal angle resolution

•
$$\sigma_{\phi} = rac{\sigma_{ heta,e^+} \oplus \sigma_{ heta,e^-}}{\hat{ heta}_{+-}}$$
,

• $\sigma_{ heta, {
m track}} = (p/p_1)^{-3/4}$,

• $\hat{\theta}_{+-} = 1.6 \,\mathrm{MeV}/E$

angular resolution due to multiple scattering

•
$$p_1 = 13.6 \text{ MeV}/c \left(\frac{4\sigma^2 l}{X_0^3}\right)^{1/6}$$
, Argon ($\sigma = l = 1 \text{mm}$): $p_1 = 50 \text{ keV}/c$ (1 bar),

 $p_1 = 1.45 \, {
m MeV}/c$ (liquid).

most probable opening angle

•
$$\sigma_{\phi} = \left[x_{+}^{-\frac{3}{4}} \oplus (1 - x_{+})^{-\frac{3}{4}} \right] \frac{(p_{1})^{\frac{3}{4}} E^{\frac{1}{4}}}{1.6 \,\mathrm{MeV}}.$$

azimuthal angle resolution

• x_+ fraction of the energy carried away by the positron,

There is hope .. at low p_1 (gas) .. at low energy.

Also need study beyond the most probable opening angle $\theta_{+-} = \hat{\theta}_{+-}$ approximation

Developed, Validated, Event Generator

- Development of a full (5D) exact (down to threshold) polarized evt generator
- Variables : azimuthal (ϕ_+, ϕ_-) and polar (θ_+, θ_-) angles of e^+ and e^- , and $x_+ \equiv E_+/E$

- Uses :
 - HELAS amplitude computation
 - SPRING event generator

H. Murayama, et al., KEK-91-11.

- S. Kawabata, Comput. Phys. Commun. 88, 309 (1995).
- Validation against published 1D distributions (nuclear and triplet conversions)

Dilution of Polarization Asymmetry due to Multiple Scattering : Optimal Fits and Full MC

• Remember : track angular resolution
$$(p/p_1)^{-3/4}$$
,

$$p_1 = 13.6 \,\mathrm{MeV}/c \left(rac{4\sigma^2 l}{X_0^3}
ight)^{1/6}$$

Energy variation of D for various values of $p_1(\mathrm{keV}/c)$

- Curves are $D(E, p_1) = \exp \left[-2(a p_1^b E^c)^2\right]$ parametrizations, a, b, c constants
- Liquid : nope (Ar, $p_1 = 1.45 \, {
 m MeV}/c$);

gas : Possible ! (1 bar, $p_1=50~{
m keV}/c)$

D.B. NIM A 729 (2013) 765

• $D \equiv \frac{\mathcal{A}_{\text{eff}}(p_1)}{\mathcal{A}(p_1 = 0)}$

Polarimetry Performance : 1 : no Experimental Cuts

- Crab-like source, T = 1 year, $V = 1 \text{ m}^3$, $\sigma = l = 0.1 \text{ cm}$, $\eta = \epsilon = 1$).
- $\mathcal{A}_{ ext{eff}}$ (thin line), σ_P (thick line);

• Argon, 5 bar, $\sigma_P \approx 1.0\%$, $\mathcal{A}_{\mathrm{eff}} \approx 15\%$

Polarimetry Performance : 2 : Experimental Cuts

- photon-source assignment selection $\theta_{pair} < 10\,^{\circ}$
- opening angle $\theta_{+-} > 0.1 \, \mathrm{rad}$
- lepton (kinetic) energy cut (5 bar argon, $0.5 \,\mathrm{MeV} \propto \mathrm{path}$ length $\approx 30 \,\mathrm{cm}$). $\sigma_P \approx 1.0\% \rightarrow 1.4\%$
- expressing the track E cut as a pathlength Λ cut (argon) :

- polarimetry with a dense detector (liquid / solid TPC, scintillator cube) would imply efficient trigger / tracking / selection of cm long tracks.
- A stack of hyper-thin Si wafer could be considered homogeneous, and if spaced far enough .. low density .. enough?

HARPO : the Demonstrator

- Time Projection Chamber (TPC)
- $(30 \text{cm})^3$ cubic TPC
- Up to 5 bar.
- Micromegas + GEM gas amplification
- Collection on x, y strips, pitch 1 mm.
- AFTER chip digitization, up to 50 MHz.
- Scintillator / WLS / PMT based trigger
 NIM A 695 (2012) 71, NIM A 718 (2013) 395

micromegas + (1 or 2) GEM
 ⁵⁵Fe & cosmics caracterization
 Ph. Gros, TIPP2014

Event Reconstruction

- Evt reco of a cosmic ray traversing the TPC, emission of a δ ray
- Track pattern recognition by combinatorial Hough transform
- x, y two track ambiguity solved by track time spectra matching
- 2 bar (Ar :95 Isobutane 5 %), shaping 100 ns.

Conclusion

A thin active target such as a gas TPC is THE detector for γ astronomy in the e^+e^- with utmost performance in the [MeV - GeV] photon energy range,

• Angular resolution improvement by ≈ 1 order of magnitude w.r.t. the Fermi LAT within reach.

```
@ 100 MeV, 5 bar argon, recoil \approx MS, 0.4° in total
```

Therefore, powerful Background rejection

And rejection of atmospheric photons and of cosmic rays is straigthforward

• Full sky, 4π acceptance

(.. if on a high orbit)

- Huge sensitivity improvement, closes the sensitivity gap between (Compton and W/Si pair) telescopes
- Provides, for the first time, polarimetry above 1 MeV!
- The HARPO demonstrator built and characterized with cosmic rays.

Preparation of data taking @ NewSUBARU Japan in Nov 2014 is in progress. ((almost) fully polarized γ beams 2 – 76 MeV)

Exploded Schematic View of a Flight Telescope

3 layers, each layer of 2 back-to-back modules, each module a $(2 \text{ m})^2 \times 0.5 \text{ m}$ TPC with an endplate segmented into $(33 \text{ cm})^2$ micromegas and charge collection blocks. 432 chips, $(12 \text{ m})^3$: 100 kg gas at 5 bar.

Conversions of a 100 MeV (left) and of a 10 MeV (right) photon in the TPC gas

Je vous remercie de votre attention.

Back-up Slides

Thin / Thick Detectors, Effective Area

- H photon attenuation, M detector mass, S surface, ϵ reconstruction efficiency
- Thin techno prevents γ loss due to Compton in low Z material at low E
- High E asymptote $A_{\rm eff} = 3.6 {\rm m}^2/{\rm ton}$ (Nuclear, Argon)

Which Pressure?

- Science. Rising the pressure :
 - degrades the angular resolution and (mildly) point like source sensitivity
 - Increases the effective area improves the precision on the polarization
- Maximum micropattern gas amplification gain (micromegas, GEM) known to decrease with pressure .. but dE/dx increases ..

D. C. Herrera, et al., "Micromegas-TPC operation at high pressure in Xenon-trimethylamine mixtures," J. Phys. Conf. Ser. 460, 012012 (2013).

micropattern gas amplification above 10 bar a concern, unless very small gap devices can be produced.

- Vessel Mass \propto gas mass to 1rst order.
 - For a given mission : which limit will we touch first (volume, mass)?

In this talk examples were given at 1, 5, 10 bar

Pressure Vessel : a Naive Static Study

No re-inforcement of any kind at the moment.

TPC gas	100	kg
outside gas	150	
vessel	1110	
PCB	142	
Scintillator veto	300	?
electronics	?	
support	?	
gas system	?	
total	> 1800	kg

Behavior upon launch?

A γ Nuclear Conversion in a 30 cm 5 bar Argon TPC

(EGS5)

Search for Axions

- Scalar field associated with U(1) symmetry devised to solve the strong CP problem.
- Couples to 2 γ through triangle anomaly.
- γ propagation through $B \Rightarrow$ Dichroism \Rightarrow E dependant rotation of linear polarization \Rightarrow linear polarization dilution.

 $g_{a\gamma\gamma} \le \pi \frac{m_a}{B\sqrt{\Delta\omega L_{GRB}}}$

• Saturation over
$$L = 2\pi\omega/m_a^2 > L_{GRB}$$
 for $m_a \leq \sqrt{\frac{2\pi\omega}{L_{GRB}}}$

and the limit $g_{a\gamma\gamma}$ reaches a ω -independent constant.

A. Rubbia and A. S. Sakharov, Astropart. Phys. 29, 20 (2008)

Optimal Track Fit with Multiple Scattering Cross Validation

• 5 bar argon,
$$\sigma = l = 0.1 \text{cm}$$
; $p_1 = 13.6 \text{ MeV}/c \left(\frac{4\sigma^2 l}{X_0^3}\right)^{1/6} = 112 \text{ keV}/c$

• 40 MeV/c electrons, $\sigma_{\theta t} = (p/p_1)^{-3/4} = 12.2 \text{ mrad}$

Smoothed angle residues RMS for track fits with a Kalman filter.

Evt Generator : One Example of Validation Plot

- Triplet conversion : cross section for recoil electron momentum larger than q_0 , $\sigma(q > q_0)$, as a function of q_0/mc , for various photon energies E; Compared with :
 - High photon energy asymptotic expression by M. L. Iparraguirre and G. O. Depaola, Eur. Phys. J. C 71, 1778 (2011).

D.B. NIM A 729 (2013) 765

- Track Momentum Measurement in TPC Alone from Multiple Estimations of Multiple Scattering
- multiple scattering $heta_0 \propto 1/p \Rightarrow p \propto 1/ heta_0$ G. Molière, Zeit. Naturforschung A, 10 (1955) 177.

 \Rightarrow

• optimization of track step size

$$\frac{\sigma_p}{p} \propto \frac{1}{\sqrt{L}} \left[\frac{p \, \sigma \sqrt{X_0}}{13.6 \,\mathrm{MeV}/c} \right]^{1/3}$$

relative precision

E range of interest

D.B. NIM A 701 (2013) 225

TPC-Based γ -Ray Telescope Projects

.. Most likely not exhaustive ..

HARPO LLR & Irfu CEA/Saclay

Polarimetry : Optimal Measurement

- Remember, fit of $\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi} \propto (1 + \mathcal{A}P \cos[2(\phi)])$ yields $\sigma_P \approx \frac{1}{\mathcal{A}} \sqrt{\frac{2}{N}}$,
- Optimal measurement; Ω
 - let's define $p(\Omega)$ the pdf of set of (here 5) variables Ω
 - search for weight $w(\Omega)$, ${\rm E}(w)$ function of P, and variance σ_P^2 minimal;
 - a solution is $w_{\text{opt}} = \frac{\partial \ln p(\Omega)}{\partial P}$ e.g. : F. V. Tkachov, Part. Nucl. Lett. 111, 28 (2002)
 - polarimetry : $p(\Omega) \equiv f(\Omega) + P \times g(\Omega)$, $w_{opt} = \frac{g(\Omega)}{f(\Omega) + P \times g(\Omega)}$.

• If
$$\mathcal{A} \ll 1$$
, $w_0 \equiv 2 \frac{g(\Omega)}{f(\Omega)}$, and
• for the 1D "projection" $p(\Omega) = (1 + \mathcal{A}P \cos [2(\phi)])$:
 $w_1 = 2 \cos 2\phi$, $E(w_1) = \mathcal{A}P$, $\sigma_P = \frac{1}{\mathcal{A}\sqrt{N}}\sqrt{2 - (\mathcal{A}P)^2}$,

Polarimetry : Optimal Measurement

• Full MC, nuclear conversion

- 1D weight : validation $\sqrt{2}$
- 5D weight :
 - similar polarization asymmetry \mathcal{A} ($\approx 15\%$ asymptotically at high E)
 - gain factor > 2 on precision σ_P w.r.t. 1D weight,
 - ability to measure precisely the 5D final state?

Polarimetry : Effects of Experimental Cuts

- opening angle, $\theta_{+-} > 0.1 \operatorname{rad}$ (easy pattern recognition
- source selection $\theta_{pair} < 10^{\circ}$
- kinetic leptons energy $E_{kin} > 0.5 \, {
 m MeV}$, (path length in 5 bar argon $pprox 30 \, {
 m cm}$)

• All cuts : $\epsilon = 45\%$, (1D) $\mathcal{A}_{\mathrm{eff}} \approx 16.6\% \ \sigma_P \approx 1.4\%$,

Polarimetry with Compton Scattering Events at High Energy

M. L. McConnell, J. M. Ryan

New Astronomy Reviews, 48 (2004) 215

Long Term Work with Gas Detector in Space

- Our present "ground" demonstrator is rather dirty (scintillator, WLS, PCB, glue ...)
- Sealed operation, no recirculation.

 \Rightarrow After on month of working, it showed significant absorption over 30 cm drift length

- Obvious cure would be recirculating / purifying the gas.
- An other option is to separate "clean" and "dirty" volumes by a ceramic foil

Sealed Mode Test

D. Attié et al., "Piggyback resistive Micromegas," JINST 8, C11007 (2013)

- Obviously the collecting board is on the "dirty" side
- The signal is then read through capacitive coupling